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N U M E R I C A L  P R O G R A M M I N G  W I T H
P Y T H O N

NUMERICAL PROGRAMMING DEFINITION

The term "Numerical Computing" - a.k.a. numerical computing or scientific computing - can be misleading.
One can think about it as "having to do with numbers" as opposed to algorithms dealing with texts for
example. If you think of Google and the way it provides links to websites for your search inquiries, you may
think about the underlying algorithm as a text based one. Yet, the core of the Google search engine is
numerical. To perform the PageRank algorithm Google executes the world's largest matrix computation.

Numerical Computing defines an area of computer science and mathematics dealing with algorithms for
numerical approximations of problems from mathematical or numerical analysis, in other words: Algorithms
solving problems involving continuous variables. Numerical analysis is used to solve science and engineering
problems.

DATA SCIENCE AND DATA ANALYSIS

This tutorial can be used as an online course on Numerical Python as it is needed by Data Scientists and Data
Analysts.

Data science is an interdisciplinary subject which includes for example statistics and computer science,
especially programming and problem solving skills. Data Science includes everything which is necessary to
create and prepare data, to manipulate, filter and clense data and to analyse data. Data can be both structured
and unstructured. We could also say Data Science includes all the techniques needed to extract and gain
information and insight from data.

Data Science is an umpbrella term which incorporates data analysis, statistics, machine learning and other
related scientific fields in order to understand and analyze data.

Another term occuring quite often in this context is "Big Data". Big Data is for sure one of the most often used
buzzwords in the software-related marketing world. Marketing managers have found out that using this term
can boost the sales of their products, regardless of the fact if they are really dealing with big data or not. The
term is often used in fuzzy ways.

Big data is data which is too large and complex, so that it is hard for data-processing application software to
deal with them. The problems include capturing and collecting data, data storage, search the data, visualization
of the data, querying, and so on.

The following concepts are associated with big data:

• volume:
the sheer amount of data, whether it will be giga-, tera-, peta- or exabytes

• velocity:
the speed of arrival and processing of data
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• veracity:
uncertainty or imprecision of data

• variety:
the many sources and types of data both structured and unstructured

The big question is how useful Python is for these purposes. If we would only use Python without any special
modules, this language could only poorly perform on the previously mentioned tasks. We will describe the
necessary tools in the following chapter.

CONNECTIONS BETWEEN PYTHON, NUMPY, MATPLOTLIB, SCIPY AND
PANDAS

Python is a general-purpose language and as such it can and it is
widely used by system administrators for operating system
administration, by web developpers as a tool to create dynamic
websites and by linguists for natural language processing tasks.
Being a truely general-purpose language, Python can of course -
without using any special numerical modules - be used to solve
numerical problems as well. So far so good, but the crux of the
matter is the execution speed. Pure Python without any
numerical modules couldn't be used for numerical tasks Matlab,
R and other languages are designed for. If it comes to
computational problem solving, it is of greatest importance to
consider the performance of algorithms, both concerning speed
and data usage.

If we use Python in combination with its modules NumPy,
SciPy, Matplotlib and Pandas, it belongs to the top numerical
programming languages. It is as efficient - if not even more
efficient - than Matlab or R.
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Numpy is a module which provides the basic data structures,
implementing multi-dimensional arrays and matrices. Besides
that the module supplies the necessary functionalities to create
and manipulate these data structures. SciPy is based on top of
Numpy, i.e. it uses the data structures provided by NumPy. It
extends the capabilities of NumPy with further useful functions
for minimization, regression, Fourier-transformation and many
others.

Matplotlib is a plotting library for the Python programming
language and the numerically oriented modules like NumPy and
SciPy.

The youngest child in this family of modules is Pandas. Pandas
is using all of the previously mentioned modules. It's build on
top of them to provide a module for the Python language, which
is also capable of data manipulation and analysis. The special
focus of Pandas consists in offering data structures and
operations for manipulating numerical tables and time series. The name is derived from the term "panel data".
Pandas is well suited for working with tabular data as it is known from spread sheet programming like Excel.

PYTHON, AN ALTERNATIVE TO MATLAB

Python is becoming more and more the main programming language for data scientists. Yet, there are still
many scientists and engineers in the scientific and engineering world that use R and MATLAB to solve their
data analysis and data science problems. It's a question troubling lots of people, which language they should
choose: The functionality of R was developed with statisticians in mind, whereas Python is a general-purpose
language. Nevertheless, Python is also - in combination with its specialized modules, like Numpy, Scipy,
Matplotlib, Pandas and so, - an ideal programming language for solving numerical problems. Furthermore, the
community of Python is a lot larger and faster growing than the one from R.

The principal disadvantage of MATLAB against Python are the costs. Python with NumPy, SciPy, Matplotlib
and Pandas is completely free, whereas MATLAB can be very expensive. "Free" means both "free" as in "free
beer" and "free" as in "freedom"! Even though MATLAB has a huge number of additional toolboxes available,
Python has the advantage that it is a more modern and complete programming language. Python is continually
becoming more powerful by a rapidly growing number of specialized modules.

Python in combination with Numpy, Scipy, Matplotlib and Pandas can be used as a complete replacement for
MATLAB.
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N U M P Y  T U T O R I A L

INTRODUCTION

NumPy is a module for Python. The name is an acronym for
"Numeric Python" or "Numerical Python". It is pronounced
/ˈnʌmpaɪ/ (NUM-py) or less often /ˈnʌmpi (NUM-pee)). It is an
extension module for Python, mostly written in C. This makes
sure that the precompiled mathematical and numerical functions
and functionalities of Numpy guarantee great execution speed.

Furthermore, NumPy enriches the programming language
Python with powerful data structures, implementing multi-
dimensional arrays and matrices. These data structures
guarantee efficient calculations with matrices and arrays. The
implementation is even aiming at huge matrices and arrays,
better know under the heading of "big data". Besides that the
module supplies a large library of high-level mathematical functions to operate on these matrices and arrays.

SciPy (Scientific Python) is often mentioned in the same breath with NumPy. SciPy needs Numpy, as it is
based on the data structures of Numpy and furthermore its basic creation and manipulation functions. It
extends the capabilities of NumPy with further useful functions for minimization, regression, Fourier-
transformation and many others.

Both NumPy and SciPy are not part of a basic Python installation. They have to be installed after the Python
installation. NumPy has to be installed before installing SciPy.

(Comment: The diagram of the image on the right side is the graphical visualisation of a matrix with 14 rows
and 20 columns. It's a so-called Hinton diagram. The size of a square within this diagram corresponds to the
size of the value of the depicted matrix. The colour determines, if the value is positive or negative. In our
example: the colour red denotes negative values and the colour green denotes positive values.)

NumPy is based on two earlier Python modules dealing with arrays. One of these is Numeric. Numeric is like
NumPy a Python module for high-performance, numeric computing, but it is obsolete nowadays. Another
predecessor of NumPy is Numarray, which is a complete rewrite of Numeric but is deprecated as well. NumPy
is a merger of those two, i.e. it is build on the code of Numeric and the features of Numarray.

COMPARISON BETWEEN CORE PYTHON AND NUMPY
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Let's assume, we want to turn the values into degrees Fahrenheit. This is very easy to accomplish with a
numpy array. The solution to our problem can be achieved by simple scalar multiplication:

When we say "Core Python", we mean Python without any special modules, i.e. especially without NumPy.

The advantages of Core Python:

• high-level number objects: integers, floating point
• containers: lists with cheap insertion and append methods, dictionaries with fast lookup

Advantages of using Numpy with Python:

• array oriented computing
• efficiently implemented multi-dimensional arrays
• designed for scientific computation

A SIMPLE NUMPY EXAMPLE

Before we can use NumPy we will have to import it. It has to be imported like any other module:

import numpy

But you will hardly ever see this. Numpy is usually renamed to np:

import numpy as np

Our first simple Numpy example deals with temperatures. Given is a list with values, e.g. temperatures in
Celsius:

cvalues = [20.1, 20.8, 21.9, 22.5, 22.7, 22.3, 21.8, 21.2, 20.9, 2
0.1]

We will turn our list "cvalues" into a one-dimensional numpy array:

C = np.array(cvalues)
print(C)

print(C * 9 / 5 + 32)

[20.1 20.8 21.9 22.5 22.7 22.3 21.8 21.2 20.9 20.1]

[68.18 69.44 71.42 72.5  72.86 72.14 71.24 70.16 69.62 68.18]
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The array C has not been changed by this expression:

print(C)

Compared to this, the solution for our Python list looks awkward:

fvalues = [ x*9/5 + 32 for x in cvalues]
print(fvalues)

So far, we referred to C as an array. The internal type is "ndarray" or to be even more precise "C is an instance
of the class numpy.ndarray":

type(C)

In the following, we will use the terms "array" and "ndarray" in most cases synonymously.

GRAPHICAL REPRESENTATION OF THE VALUES

Even though we want to cover the module matplotlib not until a later chapter, we want to demonstrate how we
can use this module to depict our temperature values. To do this, we us the package pyplot from matplotlib.

If you use the jupyter notebook, you might be well advised to include the following line of code to prevent an
external window to pop up and to have your diagram included in the notebook:

%matplotlib inline

The code to generate a plot for our values looks like this:

import matplotlib.pyplot as plt
plt.plot(C)
plt.show()

[20.1 20.8 21.9 22.5 22.7 22.3 21.8 21.2 20.9 20.1]

[68.18, 69.44, 71.42, 72.5, 72.86, 72.14, 71.24000000000001, 70.1
6, 69.62, 68.18]

Output: numpy.ndarray

NUMPY TUTORIAL 10



The function plot uses the values of the array C for the values of the ordinate, i.e. the y-axis. The indices of the
array C are taken as values for the abscissa, i.e. the x-axis.

MEMORY CONSUMPTION: NDARRAY AND LIST

The main benefits of using numpy arrays should be smaller memory consumption and better runtime
behaviour. We want to look at the memory usage of numpy arrays in this subchapter of our turorial and
compare it to the memory consumption of Python lists.
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To calculate the memory consumption of the list from the above picture, we will use the function getsizeof
from the module sys.

from sys import getsizeof as size

lst = [24, 12, 57]

size_of_list_object = size(lst) # only green box
size_of_elements = len(lst) * size(lst[0]) # 24, 12, 57

total_list_size = size_of_list_object + size_of_elements
print("Size without the size of the elements: ", size_of_list_obje
ct)
print("Size of all the elements: ", size_of_elements)
print("Total size of list, including elements: ", total_list_size)

The size of a Python list consists of the general list information, the size needed for the references to the
elements and the size of all the elements of the list. If we apply sys.getsizeof to a list, we get only the size
without the size of the elements. In the previous example, we made the assumption that all the integer
elements of our list have the same size. Of course, this is not valid in general, because memory consumption
will be higher for larger integers.

We will check now, how the memory usage changes, if we add another integer element to the list. We also
look at an empty list:

lst = [24, 12, 57, 42]

size_of_list_object = size(lst) # only green box
size_of_elements = len(lst) * size(lst[0]) # 24, 12, 57, 42

total_list_size = size_of_list_object + size_of_elements
print("Size without the size of the elements: ", size_of_list_obje
ct)
print("Size of all the elements: ", size_of_elements)
print("Total size of list, including elements: ", total_list_size)

lst = []
print("Emtpy list size: ", size(lst))

Size without the size of the elements:  96
Size of all the elements:  84
Total size of list, including elements:  180
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We can conclude from this that for every new element, we need another eight bytes for the reference to the
new object. The new integer object itself consumes 28 bytes. The size of a list "lst" without the size of the
elements can be calculated with:

64 + 8 * len(lst)

To get the complete size of an arbitrary list of integers, we have to add the sum of all the sizes of the integers.

We will examine now the memory consumption of a numpy.array. To this purpose, we will have a look at the
implementation in the following picture:

We will create the numpy array of the previous diagram and calculate the memory usage:

a = np.array([24, 12, 57])
print(size(a))

We get the memory usage for the general array information by creating an empty array:

e = np.array([])
print(size(e))

Size without the size of the elements:  104
Size of all the elements:  112
Total size of list, including elements:  216
Emtpy list size:  72

120

96
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We can see that the difference between the empty array "e" and the array "a" with three integers consists in 24
Bytes. This means that an arbitrary integer array of length "n" in numpy needs

96 + n * 8 Bytes

whereas a list of integers needs, as we have seen before

64 + 8 len(lst) + len(lst) 28

This is a minimum estimation, as Python integers can use more than 28 bytes.

When we define a Numpy array, numpy automatically chooses a fixed integer size. In our example "int64".
We can determine the size of the integers, when we define an array. Needless to say, this changes the memory
requirement:

a = np.array([24, 12, 57], np.int8)
print(size(a) - 96)

a = np.array([24, 12, 57], np.int16)
print(size(a) - 96)

a = np.array([24, 12, 57], np.int32)
print(size(a) - 96)

a = np.array([24, 12, 57], np.int64)
print(size(a) - 96)

TIME COMPARISON BETWEEN PYTHON LISTS AND NUMPY ARRAYS

One of the main advantages of NumPy is its advantage in time compared to standard Python. Let's look at the
following functions:

import time
size_of_vec = 1000

def pure_python_version():
t1 = time.time()

3
6
12
24
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X = range(size_of_vec)
Y = range(size_of_vec)
Z = [X[i] + Y[i] for i in range(len(X)) ]
return time.time() - t1

def numpy_version():
t1 = time.time()
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
Z = X + Y
return time.time() - t1

Let's call these functions and see the time consumption:

t1 = pure_python_version()
t2 = numpy_version()

print(t1, t2)
print("Numpy is in this example " + str(t1/t2) + " faster!")

It's an easier and above all better way to measure the times by using the timeit module. We will use the Timer
class in the following script.

The constructor of a Timer object takes a statement to be timed, an additional statement used for setup, and a
timer function. Both statements default to 'pass'.

The statements may contain newlines, as long as they don't contain multi-line string literals.

A Timer object has a timeit method. timeit is called with a parameter number:

timeit(number=1000000)

The main statement will be executed "number" times. This executes the setup statement once, and then returns
the time it takes to execute the main statement a "number" of times. It returns the time in seconds.

import numpy as np
from timeit import Timer

size_of_vec = 1000

X_list = range(size_of_vec)
Y_list = range(size_of_vec)

0.0010614395141601562 5.2928924560546875e-05
Numpy is in this example 20.054054054054053 faster!
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X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)

def pure_python_version():
Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ]

def numpy_version():
Z = X + Y

#timer_obj = Timer("x = x + 1", "x = 0")
timer_obj1 = Timer("pure_python_version()",

"from __main__ import pure_python_version")
timer_obj2 = Timer("numpy_version()",

"from __main__ import numpy_version")

for i in range(3):
t1 = timer_obj1.timeit(10)
t2 = timer_obj2.timeit(10)
print("time for pure Python version: ", t1)
print("time for Numpy version: ", t2)
print(f"Numpy was {t1 / t2:7.2f} times faster!")

The repeat() method is a convenience to call timeit() multiple times and return a list of results:

print(timer_obj1.repeat(repeat=3, number=10))
print(timer_obj2.repeat(repeat=3, number=10))

In [ ]:

time for pure Python version:  0.0021230499987723306
time for Numpy version:  0.0004346180066931993
Numpy was    4.88 times faster!
time for pure Python version:  0.003020321993972175
time for Numpy version:  0.00014882600225973874
Numpy was   20.29 times faster!
time for pure Python version:  0.002028984992648475
time for Numpy version:  0.0002098319964716211
Numpy was    9.67 times faster!

[0.0030275019962573424, 0.002999588003149256, 0.002212086998042650
5]
[6.104000203777105e-05, 0.0001641790004214272, 1.904800592456013
e-05]
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N U M P Y  T U T O R I A L :  C R E A T I N G
A R R A Y S

We have alreday seen in the previous chapter of our Numpy
tutorial that we can create Numpy arrays from lists and tuples.
We want to introduce now further functions for creating basic
arrays.

There are functions provided by Numpy to create arrays with
evenly spaced values within a given interval. One 'arange' uses a
given distance and the other one 'linspace' needs the number of
elements and creates the distance automatically.

CREATION OF ARRAYS WITH EVENLY SPACED VALUES

ARANGE

The syntax of arange:

arange([start,] stop[, step], [, dtype=None])

arange returns evenly spaced values within a given interval. The values are generated within the half-open
interval '[start, stop)' If the function is used with integers, it is nearly equivalent to the Python built-in function
range, but arange returns an ndarray rather than a list iterator as range does. If the 'start' parameter is not given,
it will be set to 0. The end of the interval is determined by the parameter 'stop'. Usually, the interval will not
include this value, except in some cases where 'step' is not an integer and floating point round-off affects the
length of output ndarray. The spacing between two adjacent values of the output array is set with the optional
parameter 'step'. The default value for 'step' is 1. If the parameter 'step' is given, the 'start' parameter cannot be
optional, i.e. it has to be given as well. The type of the output array can be specified with the parameter 'dtype'.
If it is not given, the type will be automatically inferred from the other input arguments.

import numpy as np
a = np.arange(1, 10)
print(a)
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x = range(1, 10)
print(x) # x is an iterator
print(list(x))

# further arange examples:
x = np.arange(10.4)
print(x)
x = np.arange(0.5, 10.4, 0.8)
print(x)

Be careful, if you use a float value for the step parameter, as you can see in the following example:

np.arange(12.04, 12.84, 0.08)

The help of arange has to say the following for the stop parameter: "End of interval. The interval does
not include this value, except in some cases where step is not an integer and floating point round-off
affects the length of out . This is what happened in our example.

The following usages of arange is a bit offbeat. Why should we use float values, if we want integers as
result. Anyway, the result might be confusing. Before arange starts, it will round the start value, end value and
the stepsize:

x = np.arange(0.5, 10.4, 0.8, int)
print(x)

This result defies all logical explanations. A look at help also helps here: "When using a non-integer step, such
as 0.1, the results will often not be consistent. It is better to use numpy.linspace for these cases. Using
linspace is not an easy workaround in some situations, because the number of values has to be known.

[1 2 3 4 5 6 7 8 9]
range(1, 10)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[ 0.  1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]
[ 0.5  1.3  2.1  2.9  3.7  4.5  5.3  6.1  6.9  7.7  8.5  9.3 10.1]

Output: array([12.04, 12.12, 12.2 , 12.28, 12.36, 12.44, 12.52, 12.6
, 12.68,

12.76, 12.84])

[ 0  1  2  3  4  5  6  7  8  9 10 11 12]
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LINSPACE

The syntax of linspace:

linspace(start, stop, num=50, endpoint=True, retstep=False)

linspace returns an ndarray, consisting of 'num' equally spaced samples in the closed interval [start, stop] or the
half-open interval [start, stop). If a closed or a half-open interval will be returned, depends on whether
'endpoint' is True or False. The parameter 'start' defines the start value of the sequence which will be created.
'stop' will the end value of the sequence, unless 'endpoint' is set to False. In the latter case, the resulting
sequence will consist of all but the last of 'num + 1' evenly spaced samples. This means that 'stop' is excluded.
Note that the step size changes when 'endpoint' is False. The number of samples to be generated can be set
with 'num', which defaults to 50. If the optional parameter 'endpoint' is set to True (the default), 'stop' will be
the last sample of the sequence. Otherwise, it is not included.

import numpy as np
# 50 values between 1 and 10:
print(np.linspace(1, 10))
# 7 values between 1 and 10:
print(np.linspace(1, 10, 7))
# excluding the endpoint:
print(np.linspace(1, 10, 7, endpoint=False))
[ 1.          1.18367347  1.36734694  1.55102041  1.73469388  1.91
836735

2.10204082  2.28571429  2.46938776  2.65306122  2.83673469  3.02
040816

3.20408163  3.3877551   3.57142857  3.75510204  3.93877551  4.12
244898

4.30612245  4.48979592  4.67346939  4.85714286  5.04081633  5.22
44898

5.40816327  5.59183673  5.7755102   5.95918367  6.14285714  6.32
653061

6.51020408  6.69387755  6.87755102  7.06122449  7.24489796  7.42
857143

7.6122449   7.79591837  7.97959184  8.16326531  8.34693878  8.53
061224

8.71428571  8.89795918  9.08163265  9.26530612  9.44897959  9.63
265306

9.81632653 10.        ]
[ 1.   2.5  4.   5.5  7.   8.5 10. ]
[1.         2.28571429 3.57142857 4.85714286 6.14285714 7.42857143
8.71428571]
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We haven't discussed one interesting parameter so far. If the optional parameter 'retstep' is set, the function
will also return the value of the spacing between adjacent values. So, the function will return a tuple
('samples', 'step'):

import numpy as np
samples, spacing = np.linspace(1, 10, retstep=True)
print(spacing)
samples, spacing = np.linspace(1, 10, 20, endpoint=True, retstep=T
rue)
print(spacing)
samples, spacing = np.linspace(1, 10, 20, endpoint=False, retste
p=True)
print(spacing)

ZERO-DIMENSIONAL ARRAYS IN NUMPY

It's possible to create multidimensional arrays in numpy. Scalars are zero dimensional. In the following
example, we will create the scalar 42. Applying the ndim method to our scalar, we get the dimension of the
array. We can also see that the type is a "numpy.ndarray" type.

import numpy as np
x = np.array(42)
print("x: ", x)
print("The type of x: ", type(x))
print("The dimension of x:", np.ndim(x))

ONE-DIMENSIONAL ARRAYS

We have already encountered a 1-dimenional array - better known to some as vectors - in our initial example.
What we have not mentioned so far, but what you may have assumed, is the fact that numpy arrays are
containers of items of the same type, e.g. only integers. The homogenous type of the array can be determined
with the attribute "dtype", as we can learn from the following example:

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])
V = np.array([3.4, 6.9, 99.8, 12.8])

0.1836734693877551
0.47368421052631576
0.45

x:  42
The type of x:  <class 'numpy.ndarray'>
The dimension of x: 0
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print("F: ", F)
print("V: ", V)
print("Type of F: ", F.dtype)
print("Type of V: ", V.dtype)
print("Dimension of F: ", np.ndim(F))
print("Dimension of V: ", np.ndim(V))

TWO- AND MULTIDIMENSIONAL ARRAYS

Of course, arrays of NumPy are not limited to one dimension. They are of arbitrary dimension. We create them
by passing nested lists (or tuples) to the array method of numpy.

A = np.array([ [3.4, 8.7, 9.9],
[1.1, -7.8, -0.7],
[4.1, 12.3, 4.8]])

print(A)
print(A.ndim)

B = np.array([ [[111, 112], [121, 122]],
[[211, 212], [221, 222]],
[[311, 312], [321, 322]] ])

print(B)
print(B.ndim)

F:  [ 1  1  2  3  5  8 13 21]
V:  [ 3.4  6.9 99.8 12.8]
Type of F:  int64
Type of V:  float64
Dimension of F:  1
Dimension of V:  1

[[ 3.4  8.7  9.9]
[ 1.1 -7.8 -0.7]
[ 4.1 12.3  4.8]]

2

[[[111 112]
[121 122]]

[[211 212]
[221 222]]

[[311 312]
[321 322]]]

3
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SHAPE OF AN ARRAY

The function "shape" returns the shape of an array. The shape is a tuple of
integers. These numbers denote the lengths of the corresponding array
dimension. In other words: The "shape" of an array is a tuple with the number
of elements per axis (dimension). In our example, the shape is equal to (6, 3),
i.e. we have 6 lines and 3 columns.

x = np.array([ [67, 63, 87],
[77, 69, 59],
[85, 87, 99],
[79, 72, 71],
[63, 89, 93],
[68, 92, 78]])

print(np.shape(x))

There is also an equivalent array property:

print(x.shape)

The shape of an array tells us also something about the order in which the indices
are processed, i.e. first rows, then columns and after that the further dimensions.

"shape" can also be used to change the shape of an array.

x.shape = (3, 6)
print(x)

x.shape = (2, 9)
print(x)

(6, 3)

(6, 3)

[[67 63 87 77 69 59]
[85 87 99 79 72 71]
[63 89 93 68 92 78]]
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You might have guessed by now that the new shape must correspond to the number of elements of the array,
i.e. the total size of the new array must be the same as the old one. We will raise an exception, if this is not the
case.

Let's look at some further examples.

The shape of a scalar is an empty tuple:

x = np.array(11)
print(np.shape(x))

B = np.array([ [[111, 112, 113], [121, 122, 123]],
[[211, 212, 213], [221, 222, 223]],
[[311, 312, 313], [321, 322, 323]],
[[411, 412, 413], [421, 422, 423]] ])

print(B.shape)

INDEXING AND SLICING

Assigning to and accessing the elements of an array is similar to other sequential data types of Python, i.e. lists
and tuples. We have also many options to indexing, which makes indexing in Numpy very powerful and
similar to the indexing of lists and tuples.

Single indexing behaves the way, you will most probably expect it:

F = np.array([1, 1, 2, 3, 5, 8, 13, 21])
# print the first element of F
print(F[0])
# print the last element of F
print(F[-1])

[[67 63 87 77 69 59 85 87 99]
[79 72 71 63 89 93 68 92 78]]

()

(4, 2, 3)

1
21
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Indexing multidimensional arrays:

A = np.array([ [3.4, 8.7, 9.9],
[1.1, -7.8, -0.7],
[4.1, 12.3, 4.8]])

print(A[1][0])

We accessed an element in the second row, i.e. the row with the index 1, and the first column (index 0). We
accessed it the same way, we would have done with an element of a nested Python list.

You have to be aware of the fact, that way of accessing multi-dimensional arrays can be highly inefficient. The
reason is that we create an intermediate array A[1] from which we access the element with the index 0. So it
behaves similar to this:

tmp = A[1]
print(tmp)
print(tmp[0])

There is another way to access elements of multi-dimensional arrays in Numpy: We use only one pair of
square brackets and all the indices are separated by commas:

print(A[1, 0])

We assume that you are familar with the slicing of lists and tuples. The syntax is the same in numpy for one-
dimensional arrays, but it can be applied to multiple dimensions as well.

The general syntax for a one-dimensional array A looks like this:

A[start:stop:step]

We illustrate the operating principle of "slicing" with some examples. We start with the easiest case, i.e. the
slicing of a one-dimensional array:

S = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(S[2:5])
print(S[:4])
print(S[6:])

1.1

[ 1.1 -7.8 -0.7]
1.1

1.1
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print(S[:])

We will illustrate the multidimensional slicing in the following examples. The ranges for each dimension are
separated by commas:

A = np.array([
[11, 12, 13, 14, 15],
[21, 22, 23, 24, 25],
[31, 32, 33, 34, 35],
[41, 42, 43, 44, 45],
[51, 52, 53, 54, 55]])

print(A[:3, 2:])

print(A[3:, :])

[2 3 4]
[0 1 2 3]
[6 7 8 9]
[0 1 2 3 4 5 6 7 8 9]

[[13 14 15]
[23 24 25]
[33 34 35]]

[[41 42 43 44 45]
[51 52 53 54 55]]
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print(A[:, 4:])

The following two examples use the third parameter "step". The reshape function is used to construct the two-
dimensional array. We will explain reshape in the following subchapter:

X = np.arange(28).reshape(4, 7)
print(X)

print(X[::2, ::3])

[[15]
[25]
[35]
[45]
[55]]

[[ 0  1  2  3  4  5  6]
[ 7  8  9 10 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]]

[[ 0  3  6]
[14 17 20]]
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print(X[::, ::3])

If the number of objects in the selection tuple is less than the dimension N, then : is assumed
for any subsequent dimensions:

A = np.array(
[ [ [45, 12, 4], [45, 13, 5], [46, 12, 6] ],

[ [46, 14, 4], [45, 14, 5], [46, 11, 5] ],
[ [47, 13, 2], [48, 15, 5], [52, 15, 1] ] ])

A[1:3, 0:2] # equivalent to A[1:3, 0:2, :]

[[ 0  3  6]
[ 7 10 13]
[14 17 20]
[21 24 27]]

Output: array([[[46, 14,  4],
[45, 14,  5]],

[[47, 13,  2],
[48, 15,  5]]])
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Attention: Whereas slicings on lists and tuples create new objects, a slicing operation on an array creates a
view on the original array. So we get an another possibility to access the array, or better a part of the array.
From this follows that if we modify a view, the original array will be modified as well.

A = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
S = A[2:6]
S[0] = 22
S[1] = 23
print(A)

Doing the similar thing with lists, we can see that we get a copy:

lst = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
lst2 = lst[2:6]
lst2[0] = 22
lst2[1] = 23
print(lst)

If you want to check, if two array names share the same memory block, you can use the function
np.may_share_memory.

np.may_share_memory(A, B)

To determine if two arrays A and B can share memory the memory-bounds of A and B are computed. The
function returns True, if they overlap and False otherwise. The function may give false positives, i.e. if it
returns True it just means that the arrays may be the same.

np.may_share_memory(A, S)

The following code shows a case, in which the use of may_share_memory is quite useful:

A = np.arange(12)
B = A.reshape(3, 4)
A[0] = 42
print(B)

[ 0  1 22 23  4  5  6  7  8  9]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Output: True

[[42  1  2  3]
[ 4  5  6  7]
[ 8  9 10 11]]

NUMPY TUTORIAL: CREATING ARRAYS 28



We can see that A and B share the memory in some way. The array attribute "data" is an object pointer to the
start of an array's data.

But we saw that if we change an element of one array the other one is changed as well. This fact is reflected
by may_share_memory:

np.may_share_memory(A, B)

The result above is "false positive" example for may_share_memory in the sense that somebody may think
that the arrays are the same, which is not the case.

CREATING ARRAYS WITH ONES, ZEROS AND EMPTY

There are two ways of initializing Arrays with Zeros or Ones. The method ones(t) takes a tuple t with the
shape of the array and fills the array accordingly with ones. By default it will be filled with Ones of type float.
If you need integer Ones, you have to set the optional parameter dtype to int:

import numpy as np
E = np.ones((2,3))
print(E)

F = np.ones((3,4),dtype=int)
print(F)

What we have said about the method ones() is valid for the method zeros() analogously, as we can see in the
following example:

Z = np.zeros((2,4))
print(Z)

Output: True

[[1. 1. 1.]
[1. 1. 1.]]

[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]]
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There is another interesting way to create an array with Ones or with Zeros, if it has to have the same shape as
another existing array 'a'. Numpy supplies for this purpose the methods ones_like(a) and zeros_like(a).

x = np.array([2,5,18,14,4])
E = np.ones_like(x)
print(E)

Z = np.zeros_like(x)
print(Z)

There is also a way of creating an array with the empty function. It creates and returns a reference to a new
array of given shape and type, without initializing the entries. Sometimes the entries are zeros, but you
shouldn't be mislead. Usually, they are arbitrary values.

np.empty((2, 4))

COPYING ARRAYS

NUMPY.COPY()

copy(obj, order='K')

Return an array copy of the given object 'obj'.

Parameter Meaning

obj array_like input data.

order
The possible values are {'C', 'F', 'A', 'K'}. This parameter controls the memory layout of the copy. 'C' means C-order,

'F' means Fortran-order, 'A' means 'F' if the object 'obj' is Fortran contiguous, 'C' otherwise. 'K' means match the
layout of 'obj' as closely as possible.

[1 1 1 1 1]
[0 0 0 0 0]

Output: array([[0., 0., 0., 0.],
[0., 0., 0., 0.]])
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import numpy as np
x = np.array([[42,22,12],[44,53,66]], order='F')
y = x.copy()

x[0,0] = 1001
print(x)

print(y)

print(x.flags['C_CONTIGUOUS'])
print(y.flags['C_CONTIGUOUS'])

NDARRAY.COPY()

There is also a ndarray method 'copy', which can be directly applied to an array. It is similiar to the above
function, but the default values for the order arguments are different.

a.copy(order='C')

Returns a copy of the array 'a'.

Parameter Meaning

order The same as with numpy.copy, but 'C' is the default value for order.

import numpy as np
x = np.array([[42,22,12],[44,53,66]], order='F')
y = x.copy()
x[0,0] = 1001
print(x)

[[1001   22   12]
[  44   53   66]]

[[42 22 12]
[44 53 66]]

False
True
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print(y)

print(x.flags['C_CONTIGUOUS'])
print(y.flags['C_CONTIGUOUS'])

IDENTITY ARRAY

In linear algebra, the identity matrix, or unit matrix, of size n is the n × n square matrix with ones on the main
diagonal and zeros elsewhere.

There are two ways in Numpy to create identity arrays:

• identy
• eye

THE IDENTITY FUNCTION

We can create identity arrays with the function identity:

identity(n, dtype=None)

The parameters:

Parameter Meaning

n An integer number defining the number of rows and columns of the output, i.e. 'n' x 'n'

dtype An optional argument, defining the data-type of the output. The default is 'float'

The output of identity is an 'n' x 'n' array with its main diagonal set to one, and all other elements are 0.

import numpy as np
np.identity(4)

[[1001   22   12]
[  44   53   66]]

[[42 22 12]
[44 53 66]]

False
True
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np.identity(4, dtype=int) # equivalent to np.identity(3, int)

THE EYE FUNCTION

Another way to create identity arrays provides the function eye. This function creates also diagonal arrays
consisting solely of ones.

It returns a 2-D array with ones on the diagonal and zeros elsewhere.

eye(N, M=None, k=0, dtype=float)

Parameter Meaning

N An integer number defining the rows of the output array.

M An optional integer for setting the number of columns in the output. If it is None, it defaults to 'N'.

k
Defining the position of the diagonal. The default is 0. 0 refers to the main diagonal. A positive value refers to an

upper diagonal, and a negative value to a lower diagonal.

dtype Optional data-type of the returned array.

eye returns an ndarray of shape (N,M). All elements of this array are equal to zero, except for the 'k'-th
diagonal, whose values are equal to one.

import numpy as np
np.eye(5, 8, k=1, dtype=int)

Output: array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])

Output: array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
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The principle of operation of the parameter 'd' of the eye function is illustrated in the following diagram:

EXERCISES:

1) Create an arbitrary one dimensional array called "v".

2) Create a new array which consists of the odd indices of previously created array "v".

3) Create a new array in backwards ordering from v.

4) What will be the output of the following code:

a = np.array([1, 2, 3, 4, 5])

Output: array([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0]])
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b = a[1:4]
b[0] = 200
print(a[1])

5) Create a two dimensional array called "m".

6) Create a new array from m, in which the elements of each row are in reverse order.

7) Another one, where the rows are in reverse order.

8) Create an array from m, where columns and rows are in reverse order.

9) Cut of the first and last row and the first and last column.

SOLUTIONS TO THE EXERCISES:

1)

import numpy as np
a = np.array([3,8,12,18,7,11,30])

2)

odd_elements = a[1::2]

3) reverse_order = a[::-1]

4) The output will be 200, because slices are views in numpy and not copies.

5) m = np.array([ [11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34]])

6) m[::,::-1]

7) m[::-1]

8) m[::-1,::-1]

9) m[1:-1,1:-1]
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D A T A  T Y P E  O B J E C T S ,  D T Y P E

DTYPE

The data type object 'dtype' is an instance of numpy.dtype class. It
can be created with numpy.dtype.

So far, we have used in our examples of numpy arrays only
fundamental numeric data types like 'int' and 'float'. These numpy
arrays contained solely homogenous data types. dtype objects are
construed by combinations of fundamental data types. With the aid
of dtype we are capable to create "Structured Arrays", - also
known as "Record Arrays". The structured arrays provide us with
the ability to have different data types per column. It has similarity
to the structure of excel or csv documents. This makes it possibe to
define data like the one in the following table with dtype:

Country Population Density Area Population

Netherlands 393 41526 16,928,800

Belgium 337 30510 11,007,020

United Kingdom 256 243610 62,262,000

Germany 233 357021 81,799,600

Liechtenstein 205 160 32,842

Italy 192 301230 59,715,625

Switzerland 177 41290 7,301,994

Luxembourg 173 2586 512,000

France 111 547030 63,601,002

Austria 97 83858 8,169,929
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Country Population Density Area Population

Greece 81 131940 11,606,813

Ireland 65 70280 4,581,269

Sweden 20 449964 9,515,744

Finland 16 338424 5,410,233

Norway 13 385252 5,033,675

Before we start with a complex data structure like the previous data, we want to introduce dtype in a very
simple example. We define an int16 data type and call this type i16. (We have to admit, that this is not a nice
name, but we use it only here!). The elements of the list 'lst' are turned into i16 types to create the two-
dimensional array A.

import numpy as np
i16 = np.dtype(np.int16)
print(i16)

lst = [ [3.4, 8.7, 9.9],
[1.1, -7.8, -0.7],
[4.1, 12.3, 4.8] ]

A = np.array(lst, dtype=i16)

print(A)

We introduced a new name for a basic data type in the previous example. This has nothing to do with the
structured arrays, which we mentioned in the introduction of this chapter of our dtype tutorial.

STRUCTURED ARRAYS

ndarrays are homogeneous data objects, i.e. all elements of an array have to be of the same data type. The data
type dytpe on the other hand allows as to define separate data types for each column.

int16
[[ 3  8  9]
[ 1 -7  0]
[ 4 12  4]]
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Now we will take the first step towards implementing the table with European countries and the information
on population, area and population density. We create a structured array with the 'density' column. The data
type is defined as np.dtype([('density', np.int)]) . We assign this data type to the variable 'dt'
for the sake of convenience. We use this data type in the darray definition, in which we use the first three
densities.

import numpy as np
dt = np.dtype([('density', np.int32)])

x = np.array([(393,), (337,), (256,)],
dtype=dt)

print(x)

print("\nThe internal representation:")
print(repr(x))

We can access the content of the density column by indexing x with the key 'density'. It looks like accessing a
dictionary in Python:

print(x['density'])

You may wonder that we have used 'np.int32' in our definition and the internal representation shows '<i4'. We
can use in the dtype definition the type directly (e.g. np.int32) or we can use a string (e.g. 'i4'). So, we could
have defined our dtype like this as well:

dt = np.dtype([('density', 'i4')])
x = np.array([(393,), (337,), (256,)],

dtype=dt)
print(x)

The 'i' means integer and the 4 means 4 bytes. What about the less-than sign in front of i4 in the result? We
could have written '<i4' in our definition as well. We can prefix a type with the '<' and '>' sign. '<' means that

[(393,) (337,) (256,)]

The internal representation:
array([(393,), (337,), (256,)],

dtype=[('density', '<i4')])

[393 337 256]

[(393,) (337,) (256,)]
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the encoding will be little-endian and '>' means that the encoding will be big-endian. No prefix means that we
get the native byte ordering. We demonstrate this in the following by defining a double-precision floating-
point number in various orderings:

# little-endian ordering
dt = np.dtype('<d')
print(dt.name, dt.byteorder, dt.itemsize)

# big-endian ordering
dt = np.dtype('>d')
print(dt.name, dt.byteorder, dt.itemsize)

# native byte ordering
dt = np.dtype('d')
print(dt.name, dt.byteorder, dt.itemsize)

The equal character '=' stands for 'native byte ordering', defined by the operating system. In our case this
means 'little-endian', because we use a Linux computer.

Another thing in our density array might be confusing. We defined the array with a list containing one-tuples.
So you may ask yourself, if it is possible to use tuples and lists interchangeably? This is not possible. The
tuples are used to define the records - in our case consisting solely of a density - and the list is the 'container'
for the records or in other words 'the lists are cursed upon'. The tuples define the atomic elements of the
structure and the lists the dimensions.

Now we will add the country name, the area and the population number to our data type:

dt = np.dtype([('country', 'S20'), ('density', 'i4'), ('area', 'i
4'), ('population', 'i4')])
population_table = np.array([

('Netherlands', 393, 41526, 16928800),
('Belgium', 337, 30510, 11007020),
('United Kingdom', 256, 243610, 62262000),
('Germany', 233, 357021, 81799600),
('Liechtenstein', 205, 160, 32842),
('Italy', 192, 301230, 59715625),
('Switzerland', 177, 41290, 7301994),
('Luxembourg', 173, 2586, 512000),
('France', 111, 547030, 63601002),
('Austria', 97, 83858, 8169929),
('Greece', 81, 131940, 11606813),

float64 = 8
float64 > 8
float64 = 8
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('Ireland', 65, 70280, 4581269),
('Sweden', 20, 449964, 9515744),
('Finland', 16, 338424, 5410233),
('Norway', 13, 385252, 5033675)],
dtype=dt)

print(population_table[:4])

We can acces every column individually:

print(population_table['density'])
print(population_table['country'])
print(population_table['area'][2:5])

UNICODE STRINGS IN ARRAY

Some may have noticed that the strings in our previous array have been prefixed with a lower case "b". This
means that we have created binary strings with the definition "('country', 'S20')". To get unicode strings we
exchange this with the definition "('country', np.unicode, 20)". We will redefine our population table now:

dt = np.dtype([('country', np.unicode, 20),
('density', 'i4'),
('area', 'i4'),
('population', 'i4')])

population_table = np.array([
('Netherlands', 393, 41526, 16928800),
('Belgium', 337, 30510, 11007020),
('United Kingdom', 256, 243610, 62262000),
('Germany', 233, 357021, 81799600),
('Liechtenstein', 205, 160, 32842),

[(b'Netherlands', 393,  41526, 16928800)
(b'Belgium', 337,  30510, 11007020)
(b'United Kingdom', 256, 243610, 62262000)
(b'Germany', 233, 357021, 81799600)]

[393 337 256 233 205 192 177 173 111  97  81  65  20  16  13]
[b'Netherlands' b'Belgium' b'United Kingdom' b'Germany' b'Liechten
stein'
b'Italy' b'Switzerland' b'Luxembourg' b'France' b'Austria' b'Gree

ce'
b'Ireland' b'Sweden' b'Finland' b'Norway']

[243610 357021    160]
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('Italy', 192, 301230, 59715625),
('Switzerland', 177, 41290, 7301994),
('Luxembourg', 173, 2586, 512000),
('France', 111, 547030, 63601002),
('Austria', 97, 83858, 8169929),
('Greece', 81, 131940, 11606813),
('Ireland', 65, 70280, 4581269),
('Sweden', 20, 449964, 9515744),
('Finland', 16, 338424, 5410233),
('Norway', 13, 385252, 5033675)],
dtype=dt)

print(population_table[:4])

INPUT AND OUTPUT OF STRUCTURED ARRAYS

In most applications it will be necessary to save the data from a program into a file. We will write our
previously created "darray" to a file with the command savetxt. You will find a detailled introduction into this
topic in our chapter Reading and Writing Data Files

np.savetxt("population_table.csv",
population_table,
fmt="%s;%d;%d;%d",
delimiter=";")

It is highly probable that you will need to read in the previously written file at a later date. This can be
achieved with the function genfromtxt.

dt = np.dtype([('country', np.unicode, 20), ('density', 'i4'), ('a
rea', 'i4'), ('population', 'i4')])

x = np.genfromtxt("population_table.csv",
dtype=dt,
delimiter=";")

print(x)

[('Netherlands', 393,  41526, 16928800) ('Belgium', 337,  30510, 1
1007020)
('United Kingdom', 256, 243610, 62262000)
('Germany', 233, 357021, 81799600)]
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There is also a function "loadtxt", but it is more difficult to use, because it returns the strings as binary strings!

To overcome this problem, we can use loadtxt with a converter function for the first column.

dt = np.dtype([('country', np.unicode, 20), ('density', 'i4'), ('a
rea', 'i4'), ('population', 'i4')])

x = np.loadtxt("population_table.csv",
dtype=dt,
converters={0: lambda x: x.decode('utf-8')},
delimiter=";")

print(x)

[('Netherlands', 393,  41526, 16928800) ('Belgium', 337,  30510, 1
1007020)
('United Kingdom', 256, 243610, 62262000)
('Germany', 233, 357021, 81799600)
('Liechtenstein', 205,    160,    32842) ('Italy', 192, 301230, 5

9715625)
('Switzerland', 177,  41290,  7301994)
('Luxembourg', 173,   2586,   512000) ('France', 111, 547030, 636

01002)
('Austria',  97,  83858,  8169929) ('Greece',  81, 131940, 116068

13)
('Ireland',  65,  70280,  4581269) ('Sweden',  20, 449964,  95157

44)
('Finland',  16, 338424,  5410233) ('Norway',  13, 385252,  50336

75)]

[('Netherlands', 393,  41526, 16928800) ('Belgium', 337,  30510, 1
1007020)
('United Kingdom', 256, 243610, 62262000)
('Germany', 233, 357021, 81799600)
('Liechtenstein', 205,    160,    32842) ('Italy', 192, 301230, 5

9715625)
('Switzerland', 177,  41290,  7301994)
('Luxembourg', 173,   2586,   512000) ('France', 111, 547030, 636

01002)
('Austria',  97,  83858,  8169929) ('Greece',  81, 131940, 116068

13)
('Ireland',  65,  70280,  4581269) ('Sweden',  20, 449964,  95157

44)
('Finland',  16, 338424,  5410233) ('Norway',  13, 385252,  50336

75)]
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EXERCISES:

Before you go on, you may take time to do some exercises to deepen the understanding of the previously
learned stuff.

1. Exercise:
Define a structured array with two columns. The first column contains the product ID, which can
be defined as an int32. The second column shall contain the price for the product. How can you
print out the column with the product IDs, the first row and the price for the third article of this
structured array?

2. Exercise:
Figure out a data type definition for time records with entries for hours, minutes and seconds.

SOLUTIONS:

Solution to the first exercise:

import numpy as np
mytype = [('productID', np.int32), ('price', np.float64)]

stock = np.array([(34765, 603.76),
(45765, 439.93),
(99661, 344.19),
(12129, 129.39)], dtype=mytype)

print(stock[1])
print(stock["productID"])
print(stock[2]["price"])
print(stock)

Solution to the second exercise:

(45765,  439.93)
[34765 45765 99661 12129]
344.19
[(34765,  603.76) (45765,  439.93) (99661,  344.19) (12129,  129.3
9)]
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time_type = np.dtype( [('h', int), ('min', int),
('sec', int)])

times = np.array([(11, 38, 5),
(14, 56, 0),
(3, 9, 1)], dtype=time_type)

print(times)
print(times[0])
# reset the first time record:
times[0] = (11, 42, 17)
print(times[0])

A MORE COMPLEX EXAMPLE:

We will increase the complexity of our previous example by adding temperatures to the records.

time_type = np.dtype( np.dtype([('time', [('h', int), ('min', in
t), ('sec', int)]),

('temperature', float)] ))

times = np.array( [((11, 42, 17), 20.8), ((13, 19, 3), 23.2) ], dt
ype=time_type)
print(times)
print(times['time'])
print(times['time']['h'])
print(times['temperature'])

EXERCISE

This exercise should be closer to real life examples. Usually, we have to create or get the data for our

[(11, 38, 5) (14, 56, 0) ( 3,  9, 1)]
(11, 38, 5)
(11, 42, 17)

[((11, 42, 17),  20.8) ((13, 19,  3),  23.2)]
[(11, 42, 17) (13, 19,  3)]
[11 13]
[ 20.8  23.2]
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structured array from some data base or file. We will use the list, which we have created in our chapter on file
I/O "File Management". The list has been saved with the aid of pickle.dump in the file cities_and_times.pkl.

So the first task consists in unpickling our data:

import pickle
fh = open("cities_and_times.pkl", "br")
cities_and_times = pickle.load(fh)
print(cities_and_times[:30])

Turning our data into a structured array:

time_type = np.dtype([('city', 'U30'), ('day', 'U3'), ('time',
[('h', int), ('min', int)])])

times = np.array( cities_and_times , dtype=time_type)
print(times['time'])
print(times['city'])
x = times[27]
x[0]

[('Amsterdam', 'Sun', (8, 52)), ('Anchorage', 'Sat', (23, 52)),
('Ankara', 'Sun', (10, 52)), ('Athens', 'Sun', (9, 52)), ('Atlant
a', 'Sun', (2, 52)), ('Auckland', 'Sun', (20, 52)), ('Barcelona',
'Sun', (8, 52)), ('Beirut', 'Sun', (9, 52)), ('Berlin', 'Sun',
(8, 52)), ('Boston', 'Sun', (2, 52)), ('Brasilia', 'Sun', (5, 5
2)), ('Brussels', 'Sun', (8, 52)), ('Bucharest', 'Sun', (9, 52)),
('Budapest', 'Sun', (8, 52)), ('Cairo', 'Sun', (9, 52)), ('Calgar
y', 'Sun', (1, 52)), ('Cape Town', 'Sun', (9, 52)), ('Casablanc
a', 'Sun', (7, 52)), ('Chicago', 'Sun', (1, 52)), ('Columbus', 'Su
n', (2, 52)), ('Copenhagen', 'Sun', (8, 52)), ('Dallas', 'Sun',
(1, 52)), ('Denver', 'Sun', (1, 52)), ('Detroit', 'Sun', (2, 5
2)), ('Dubai', 'Sun', (11, 52)), ('Dublin', 'Sun', (7, 52)), ('Edm
onton', 'Sun', (1, 52)), ('Frankfurt', 'Sun', (8, 52)), ('Halifa
x', 'Sun', (3, 52)), ('Helsinki', 'Sun', (9, 52))]
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In [ ]:

[( 8, 52) (23, 52) (10, 52) ( 9, 52) ( 2, 52) (20, 52) ( 8, 52) (
9, 52)
( 8, 52) ( 2, 52) ( 5, 52) ( 8, 52) ( 9, 52) ( 8, 52) ( 9, 52) (

1, 52)
( 9, 52) ( 7, 52) ( 1, 52) ( 2, 52) ( 8, 52) ( 1, 52) ( 1, 52) (

2, 52)
(11, 52) ( 7, 52) ( 1, 52) ( 8, 52) ( 3, 52) ( 9, 52) ( 1, 52) (

2, 52)
(10, 52) ( 9, 52) ( 9, 52) (13, 37) (10, 52) ( 0, 52) ( 7, 52) (

7, 52)
( 0, 52) ( 8, 52) (18, 52) ( 2, 52) ( 1, 52) ( 2, 52) (10, 52) (

1, 52)
( 2, 52) ( 8, 52) ( 2, 52) ( 8, 52) ( 2, 52) ( 0, 52) ( 8, 52) (

7, 52)
(10, 52) ( 8, 52) ( 1, 52) ( 0, 52) ( 1, 52) ( 4, 52) ( 0, 52) (1

5, 52)
(15, 52) ( 8, 52) (18, 52) ( 5, 52) (16, 52) ( 2, 52) ( 0, 52) (

8, 52)
( 8, 52) ( 2, 52) ( 1, 52) ( 8, 52)]

['Amsterdam' 'Anchorage' 'Ankara' 'Athens' 'Atlanta' 'Auckland' 'B
arcelona'
'Beirut' 'Berlin' 'Boston' 'Brasilia' 'Brussels' 'Bucharest' 'Bud

apest'
'Cairo' 'Calgary' 'Cape Town' 'Casablanca' 'Chicago' 'Columbus'
'Copenhagen' 'Dallas' 'Denver' 'Detroit' 'Dubai' 'Dublin' 'Edmont

on'
'Frankfurt' 'Halifax' 'Helsinki' 'Houston' 'Indianapolis' 'Istanb

ul'
'Jerusalem' 'Johannesburg' 'Kathmandu' 'Kuwait City' 'Las Vegas'

'Lisbon'
'London' 'Los Angeles' 'Madrid' 'Melbourne' 'Miami' 'Minneapolis'
'Montreal' 'Moscow' 'New Orleans' 'New York' 'Oslo' 'Ottawa' 'Par

is'
'Philadelphia' 'Phoenix' 'Prague' 'Reykjavik' 'Riyadh' 'Rome'
'Salt Lake City' 'San Francisco' 'San Salvador' 'Santiago' 'Seatt

le'
'Shanghai' 'Singapore' 'Stockholm' 'Sydney' 'São Paulo' 'Tokyo'

'Toronto'
'Vancouver' 'Vienna' 'Warsaw' 'Washington DC' 'Winnipeg' 'Zuric

h']
Output: 'Frankfurt'
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N U M E R I C A L  O P E R A T I O N S  O N
N U M P Y  A R R A Y S

We have seen lots of operators in our Python tutorial. Of
course, we have also seen many cases of operator
overloading, e.g. "+" for the addition of numerical values
and the concatenation of strings.

42 + 5

"Python is one of the best " + "or
maybe the best programming language!"

We will learn in this introduction that the operator signs
are overloaded in Numpy as well, so that they can be used
in a "natural" way.

We can, for example, add a scalar to an ndarrays, i.e. the
scalar will be added to every component. The same is
possible for subtraction, division, multiplication and even for applying functions, like sine, cosine and so on,
to an array.

It is also extremely easy to use all these operators on two arrays as well.

USING SCALARS

Let's start with adding scalars to arrays:

import numpy as np
lst = [2,3, 7.9, 3.3, 6.9, 0.11, 10.3, 12.9]
v = np.array(lst)
v = v + 2
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print(v)

Multiplication, Subtraction, Division and exponentiation are as easy as the previous addition:

print(v * 2.2)

print(v - 1.38)

print(v ** 2)
print(v ** 1.5)

We started this example with a list lst, which we turned into the array v. Do you know how to perform the
above operations on a list, i.e. multiply, add, subtract and exponentiate every element of the list with a scalar?
We could use a for loop for this purpose. Let us do it for the addition without loss of generality. We will add
the value 2 to every element of the list:

lst = [2,3, 7.9, 3.3, 6.9, 0.11, 10.3, 12.9]
res = []
for val in lst:

res.append(val + 2)

print(res)

Even though this solution works it is not the Pythonic way to do it. We will rather use a list comprehension for
this purpose than the clumsy solution above. If you are not familar with this approach, you may consult our
chapter on list comprehension in our Python course.

res = [ val + 2 for val in lst]
print(res)

[  4.     5.     9.9    5.3    8.9    2.11  12.3   14.9 ]

[  4.4     6.6    17.38    7.26   15.18    0.242  22.66   28.38 ]

[  0.62   1.62   6.52   1.92   5.52  -1.27   8.92  11.52]

[  4.00000000e+00   9.00000000e+00   6.24100000e+01   1.08900000
e+01

4.76100000e+01   1.21000000e-02   1.06090000e+02   1.66410000
e+02]
[  2.82842712e+00   5.19615242e+00   2.22044815e+01   5.99474770
e+00

1.81248172e+01   3.64828727e-02   3.30564215e+01   4.63323753
e+01]

[4, 5, 9.9, 5.3, 8.9, 2.11, 12.3, 14.9]
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Even though we had already measured the time consumed by Numpy compared to "plane" Python, we will
compare these two approaches as well:

v = np.random.randint(0, 100, 1000)

%timeit v + 1

lst = list(v)

%timeit [ val + 2 for val in lst]

ARITHMETIC OPERATIONS WITH TWO ARRAYS

If we use another array instead of a scalar, the elements of both arrays will be component-wise combined:

import numpy as np
A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])
B = np.ones((3,3))

print("Adding to arrays: ")
print(A + B)

print("\nMultiplying two arrays: ")
print(A * (B + 1))

[4, 5, 9.9, 5.3, 8.9, 2.11, 12.3, 14.9]

1000000 loops, best of 3: 1.69 µs per loop

1000 loops, best of 3: 452 µs per loop

Adding to arrays:
[[ 12.  13.  14.]
[ 22.  23.  24.]
[ 32.  33.  34.]]

Multiplying two arrays:
[[ 22.  24.  26.]
[ 42.  44.  46.]
[ 62.  64.  66.]]
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"A * B" in the previous example shouldn't be mistaken for matrix multiplication. The elements are solely
component-wise multiplied.

MATRIX MULTIPLICATION:

For this purpose, we can use the dot product. Using the previous arrays, we can calculate the matrix
multiplication:

np.dot(A, B)

DEFINITION OF THE DOT PRODUCT

The dot product is defined like this:

dot(a, b, out=None)

For 2-D arrays the dot product is equivalent to matrix multiplication. For 1-D arrays it is the same as the inner
product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of 'a'
and the second-to-last of 'b'::

Parameter Meaning

a array or array like argument

b array or array like argument

out
'out' is an optional parameter, which must have the exact kind of what would be returned, if it was not used. This is a

performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

The function dot returns the dot product of 'a' and 'b'. If 'a' and 'b' are both scalars or both 1-D arrays then a
scalar is returned; otherwise an array will returned.

It will raise a ValueError, if the shape of the last dimension of 'a' is not the same size as the shape of the

Output: array([[ 36.,  36.,  36.],
[ 66.,  66.,  66.],
[ 96.,  96.,  96.]])
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second-to-last dimension of 'b', i.e. a.shape[-1] == b.shape[-2]

EXAMPLES OF USING THE DOT PRODUCT

We will begin with the cases in which both arguments are scalars or one-dimensional array:

print(np.dot(3, 4))
x = np.array([3])
y = np.array([4])
print(x.ndim)
print(np.dot(x, y))

x = np.array([3, -2])
y = np.array([-4, 1])
print(np.dot(x, y))

Let's go to the two-dimensional use case:

A = np.array([ [1, 2, 3],
[3, 2, 1] ])

B = np.array([ [2, 3, 4, -2],
[1, -1, 2, 3],
[1, 2, 3, 0] ])

# es muss gelten:
print(A.shape[-1] == B.shape[-2], A.shape[1])
print(np.dot(A, B))

We can learn from the previous example that the number of columns of the first two-dimension array have to
be the same as the number of the lines of the second two-dimensional array.

12
1
12
-14

(True, 3)
[[ 7  7 17  4]
[ 9  9 19  0]]
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THE DOT PRODUCT IN THE 3-DIMENSIONAL CASE

It's getting really vexing, if we use 3-dimensional arrays as the arguments of dot.

We will use two symmetrical three-dimensional arrays in the first example:

import numpy as np
X = np.array( [[[3, 1, 2],

[4, 2, 2],
[2, 4, 1]],

[[3, 2, 2],
[4, 4, 3],
[4, 1, 1]],

[[2, 2, 1],
[3, 1, 3],
[3, 2, 3]]])

Y = np.array( [[[2, 3, 1],
[2, 2, 4],
[3, 4, 4]],

[[1, 4, 1],
[4, 1, 2],
[4, 1, 2]],

[[1, 2, 3],
[4, 1, 1],
[3, 1, 4]]])

R = np.dot(X, Y)

print("The shapes:")
print(X.shape)
print(Y.shape)
print(R.shape)

print("\nThe Result R:")
print(R)
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To demonstrate how the dot product in the three-dimensional case works, we will use different arrays with

The shapes:
(3, 3, 3)
(3, 3, 3)
(3, 3, 3, 3)

The Result R:
[[[[14 19 15]

[15 15  9]
[13  9 18]]

[[18 24 20]
[20 20 12]
[18 12 22]]

[[15 18 22]
[22 13 12]
[21  9 14]]]

[[[16 21 19]
[19 16 11]
[17 10 19]]

[[25 32 32]
[32 23 18]
[29 15 28]]

[[13 18 12]
[12 18  8]
[11 10 17]]]

[[[11 14 14]
[14 11  8]
[13  7 12]]

[[17 23 19]
[19 16 11]
[16 10 22]]

[[19 25 23]
[23 17 13]
[20 11 23]]]]
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non-symmetrical shapes in the following example:

import numpy as np
X = np.array(

[[[3, 1, 2],
[4, 2, 2]],

[[-1, 0, 1],
[1, -1, -2]],

[[3, 2, 2],
[4, 4, 3]],

[[2, 2, 1],
[3, 1, 3]]])

Y = np.array(
[[[2, 3, 1, 2, 1],

[2, 2, 2, 0, 0],
[3, 4, 0, 1, -1]],

[[1, 4, 3, 2, 2],
[4, 1, 1, 4, -3],
[4, 1, 0, 3, 0]]])

R = np.dot(X, Y)

print("X.shape: ", X.shape, "   X.ndim: ", X.ndim)
print("Y.shape: ", Y.shape, "   Y.ndim: ", Y.ndim)
print("R.shape: ", R.shape, "R.ndim: ", R.ndim)

print("\nThe result array R:\n")
print(R)
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Let's have a look at the following sum products:

i = 0
for j in range(X.shape[1]):

for k in range(Y.shape[0]):
for m in range(Y.shape[2]):

fmt = "    sum(X[{}, {}, :] * Y[{}, :, {}] : {}"
arguments = (i, j, k, m, sum(X[i, j, :] * Y[k, :, m]))
print(fmt.format(*arguments))

('X.shape: ', (4, 2, 3), '   X.ndim: ', 3)
('Y.shape: ', (2, 3, 5), '   Y.ndim: ', 3)
('R.shape: ', (4, 2, 2, 5), 'R.ndim: ', 4)

The result array R:

[[[[ 14  19   5   8   1]
[ 15  15  10  16   3]]

[[ 18  24   8  10   2]
[ 20  20  14  22   2]]]

[[[  1   1  -1  -1  -2]
[  3  -3  -3   1  -2]]

[[ -6  -7  -1   0   3]
[-11   1   2  -8   5]]]

[[[ 16  21   7   8   1]
[ 19  16  11  20   0]]

[[ 25  32  12  11   1]
[ 32  23  16  33  -4]]]

[[[ 11  14   6   5   1]
[ 14  11   8  15  -2]]

[[ 17  23   5   9   0]
[ 19  16  10  19   3]]]]
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Hopefully, you have noticed that we have created the elements of R[0], one ofter the other.

print(R[0])

This means that we could have created the array R by applying the sum products in the way above. To "prove"
this, we will create an array R2 by using the sum product, which is equal to R in the following example:

R2 = np.zeros(R.shape, dtype=np.int)

for i in range(X.shape[0]):
for j in range(X.shape[1]):

for k in range(Y.shape[0]):
for m in range(Y.shape[2]):

R2[i, j, k, m] = sum(X[i, j, :] * Y[k, :, m])

print( np.array_equal(R, R2) )

sum(X[0, 0, :] * Y[0, :, 0] :  14
sum(X[0, 0, :] * Y[0, :, 1] :  19
sum(X[0, 0, :] * Y[0, :, 2] :  5
sum(X[0, 0, :] * Y[0, :, 3] :  8
sum(X[0, 0, :] * Y[0, :, 4] :  1
sum(X[0, 0, :] * Y[1, :, 0] :  15
sum(X[0, 0, :] * Y[1, :, 1] :  15
sum(X[0, 0, :] * Y[1, :, 2] :  10
sum(X[0, 0, :] * Y[1, :, 3] :  16
sum(X[0, 0, :] * Y[1, :, 4] :  3
sum(X[0, 1, :] * Y[0, :, 0] :  18
sum(X[0, 1, :] * Y[0, :, 1] :  24
sum(X[0, 1, :] * Y[0, :, 2] :  8
sum(X[0, 1, :] * Y[0, :, 3] :  10
sum(X[0, 1, :] * Y[0, :, 4] :  2
sum(X[0, 1, :] * Y[1, :, 0] :  20
sum(X[0, 1, :] * Y[1, :, 1] :  20
sum(X[0, 1, :] * Y[1, :, 2] :  14
sum(X[0, 1, :] * Y[1, :, 3] :  22
sum(X[0, 1, :] * Y[1, :, 4] :  2

[[[14 19  5  8  1]
[15 15 10 16  3]]

[[18 24  8 10  2]
[20 20 14 22  2]]]
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MATRICES VS. TWO-DIMENSIONAL ARRAYS

Some may have taken two-dimensional arrays of Numpy as matrices. This is principially all right, because
they behave in most aspects like our mathematical idea of a matrix. We even saw that we can perform matrix
multiplication on them. Yet, there is a subtle difference. There are "real" matrices in Numpy. They are a subset
of the two-dimensional arrays. We can turn a two-dimensional array into a matrix by applying the "mat"
function. The main difference shows, if you multiply two two-dimensional arrays or two matrices. We get real
matrix multiplication by multiplying two matrices, but the two-dimensional arrays will be only multiplied
component-wise:

import numpy as np
A = np.array([ [1, 2, 3], [2, 2, 2], [3, 3, 3] ])
B = np.array([ [3, 2, 1], [1, 2, 3], [-1, -2, -3] ])

R = A * B
print(R)

MA = np.mat(A)
MB = np.mat(B)

R = MA * MB
print(R)

COMPARISON OPERATORS

We are used to comparison operators from Python, when we apply them to integers, floats or strings for
example. We use them to test for True or False. If we compare two arrays, we don't get a simple True or False
as a return value. The comparisons are performed elementswise. This means that we get a Boolean array as a

True

[[ 3  4  3]
[ 2  4  6]
[-3 -6 -9]]

[[ 2  0 -2]
[ 6  4  2]
[ 9  6  3]]
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return value:

import numpy as np
A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])
B = np.array([ [11, 102, 13], [201, 22, 203], [31, 32, 303] ])

A == B

It is possible to compare complete arrays for equality as well. We use array_equal for this purpose.
array_equal returns True if two arrays have the same shape and elements, otherwise False will be returned.

print(np.array_equal(A, B))
print(np.array_equal(A, A))

LOGICAL OPERATORS

We can also apply the logical 'or' and the logical 'and' to arrays elementwise. We can use the functions
'logical_or' and 'logical_and' to this purpose.

a = np.array([ [True, True], [False, False]])
b = np.array([ [True, False], [True, False]])
print(np.logical_or(a, b))
print(np.logical_and(a, b))

Output: array([[ True, False,  True],
[False,  True, False],
[ True,  True, False]], dtype=bool)

False
True

[[ True  True]
[ True False]]

[[ True False]
[False False]]
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APPLYING OPERATORS ON ARRAYS WITH DIFFERENT SHAPES

So far we have covered two different cases with basic operators like "+" or "*":

• an operator applied to an array and a scalar
• an operator applied to two arrays of the same shape

We will see in the following that we can also apply operators on arrays, if they have different shapes. Yet, it
works only under certain conditions.

BROADCASTING

Numpy provides a powerful mechanism, called Broadcasting, which allows to perform arithmetic operations
on arrays of different shapes. This means that we have a smaller array and a larger array, and we transform or
apply the smaller array multiple times to perform some operation on the larger array. In other words: Under
certain conditions, the smaller array is "broadcasted" in a way that it has the same shape as the larger array.

With the aid of broadcasting we can avoid loops in our Python program. The looping occurs implicitly in the
Numpy implementations, i.e. in C. We also avoid creating unnecessary copies of our data.

We demonstrate the operating principle of broadcasting in three simple and descriptive examples.

FIRST EXAMPLE OF BROADCASTING:

import numpy as np
A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])
B = np.array([1, 2, 3])

print("Multiplication with broadcasting: ")
print(A * B)
print("... and now addition with broadcasting: ")
print(A + B)
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The following diagram illustrates the way of working of broadcasting:

B is treated as if it were construed like this:

B = np.array([[1, 2, 3],] * 3)
print(B)

SECOND EXAMPLE:

For this example, we need to know how to turn a row vector into a column vector:

B = np.array([1, 2, 3])

Multiplication with broadcasting:
[[11 24 39]
[21 44 69]
[31 64 99]]

... and now addition with broadcasting:
[[12 14 16]
[22 24 26]
[32 34 36]]

[[1 2 3]
[1 2 3]
[1 2 3]]
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B[:, np.newaxis]

Now we are capable of doing the multipliplication using broadcasting:

A * B[:, np.newaxis]

B is treated as if it were construed like this:

np.array([[1, 2, 3],] * 3).transpose()

THIRD EXAMPLE:

A = np.array([10, 20, 30])
B = np.array([1, 2, 3])
A[:, np.newaxis]

Output: array([[1],
[2],
[3]])

Output: array([[11, 12, 13],
[42, 44, 46],
[93, 96, 99]])

Output: array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
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A[:, np.newaxis] * B

ANOTHER WAY TO DO IT

Doing it without broadcasting:

import numpy as np
A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])

B = np.array([1, 2, 3])

B = B[np.newaxis, :]
B = np.concatenate((B, B, B))

print("Multiplication: ")
print(A * B)
print("... and now addition again: ")
print(A + B)

Output: array([[10],
[20],
[30]])

Output: array([[10, 20, 30],
[20, 40, 60],
[30, 60, 90]])
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Using 'tile':

import numpy as np
A = np.array([ [11, 12, 13], [21, 22, 23], [31, 32, 33] ])

B = np.tile(np.array([1, 2, 3]), (3, 1))

print(B)

print("Multiplication: ")
print(A * B)
print("... and now addition again: ")
print(A + B)

DISTANCE MATRIX

In mathematics, computer science and especially graph theory, a distance matrix is a matrix or a two-
dimensional array, which contains the distances between the elements of a set, pairwise taken. The size of this
two-dimensional array in n x n, if the set consists of n elements.

Multiplication:
[[11 24 39]
[21 44 69]
[31 64 99]]

... and now addition again:
[[12 14 16]
[22 24 26]
[32 34 36]]

[[1 2 3]
[1 2 3]
[1 2 3]]

Multiplication:
[[11 24 39]
[21 44 69]
[31 64 99]]

... and now addition again:
[[12 14 16]
[22 24 26]
[32 34 36]]
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A practical example of a distance matrix is a distance matrix between geographic locations, in our example
Eurpean cities:

cities = ["Barcelona", "Berlin", "Brussels", "Bucharest",
"Budapest", "Copenhagen", "Dublin", "Hamburg", "Istanbu

l",
"Kiev", "London", "Madrid", "Milan", "Moscow", "Munich",
"Paris", "Prague", "Rome", "Saint Petersburg",
"Stockholm", "Vienna", "Warsaw"]

dist2barcelona = [0, 1498, 1063, 1968,
1498, 1758, 1469, 1472, 2230,
2391, 1138, 505, 725, 3007, 1055,
833, 1354, 857, 2813,
2277, 1347, 1862]

dists = np.array(dist2barcelona[:12])
print(dists)
print(np.abs(dists - dists[:, np.newaxis]))

3-DIMENSIONAL BROADCASTING
A = np.array([ [[3, 4, 7], [5, 0, -1] , [2, 1, 5]],

[[1, 0, -1], [8, 2, 4], [5, 2, 1]],
[[2, 1, 3], [1, 9, 4], [5, -2, 4]]])

B = np.array([ [[3, 4, 7], [1, 0, -1], [1, 2, 3]] ])

[   0 1498 1063 1968 1498 1758 1469 1472 2230 2391 1138  505]
[[   0 1498 1063 1968 1498 1758 1469 1472 2230 2391 1138  505]
[1498    0  435  470    0  260   29   26  732  893  360  993]
[1063  435    0  905  435  695  406  409 1167 1328   75  558]
[1968  470  905    0  470  210  499  496  262  423  830 1463]
[1498    0  435  470    0  260   29   26  732  893  360  993]
[1758  260  695  210  260    0  289  286  472  633  620 1253]
[1469   29  406  499   29  289    0    3  761  922  331  964]
[1472   26  409  496   26  286    3    0  758  919  334  967]
[2230  732 1167  262  732  472  761  758    0  161 1092 1725]
[2391  893 1328  423  893  633  922  919  161    0 1253 1886]
[1138  360   75  830  360  620  331  334 1092 1253    0  633]
[ 505  993  558 1463  993 1253  964  967 1725 1886  633    0]]
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B * A

We will use the following transformations in our chapter on Images Manipulation and Processing:

B = np.array([1, 2, 3])

B = B[np.newaxis, :]
print(B.shape)
B = np.concatenate((B, B, B)).transpose()
print(B.shape)
B = B[:, np.newaxis]
print(B.shape)
print(B)

print(A * B)

Output: array([[[ 9, 16, 49],
[ 5,  0,  1],
[ 2,  2, 15]],

[[ 3,  0, -7],
[ 8,  0, -4],
[ 5,  4,  3]],

[[ 6,  4, 21],
[ 1,  0, -4],
[ 5, -4, 12]]])
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(1, 3)
(3, 3)
(3, 1, 3)
[[[1 1 1]]

[[2 2 2]]

[[3 3 3]]]
[[[ 3  4  7]

[ 5  0 -1]
[ 2  1  5]]

[[ 2  0 -2]
[16  4  8]
[10  4  2]]

[[ 6  3  9]
[ 3 27 12]
[15 -6 12]]]
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N U M P Y  A R R A Y S :  C O N C A T E N A T I N G ,
F L A T T E N I N G  A N D  A D D I N G
D I M E N S I O N S

So far, we have learned in our tutorial how to create
arrays and how to apply numerical operations on
numpy arrays. If we program with numpy, we will
come sooner or later to the point, where we will need
functions to manipulate the shape or dimension of
arrays. We wil also learn how to concatenate arrays.
Furthermore, we will demonstrate the possibilities to
add dimensions to existing arrays and how to stack
multiple arrays. We will end this chapter by showing
an easy way to construct new arrays by repeating
existing arrays.

The picture shows a tesseract. A tesseract is a

hypercube in ℜ4. The tesseract is to the cube as the
cube is to the square: the surface of the cube consists
of six square sides, whereas the hypersurface of the
tesseract consists of eight cubical cells.

FLATTEN AND RESHAPE ARRAYS

There are two methods to flatten a multidimensional array:

• flatten()
• ravel()

FLATTEN

flatten is a ndarry method with an optional keyword parameter "order". order can have the values "C", "F" and
"A". The default of order is "C". "C" means to flatten C style in row-major ordering, i.e. the rightmost index
"changes the fastest" or in other words: In row-major order, the row index varies the slowest, and the column
index the quickest, so that a[0,1] follows [0,0].
"F" stands for Fortran column-major ordering. "A" means preserve the the C/Fortran ordering.

import numpy as np
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A = np.array([[[ 0, 1],
[ 2, 3],
[ 4, 5],
[ 6, 7]],

[[ 8, 9],
[10, 11],
[12, 13],
[14, 15]],

[[16, 17],
[18, 19],
[20, 21],
[22, 23]]])

Flattened_X = A.flatten()
print(Flattened_X)

print(A.flatten(order="C"))
print(A.flatten(order="F"))
print(A.flatten(order="A"))

RAVEL

The order of the elements in the array returned by ravel() is normally "C-style".

ravel(a, order='C')

ravel returns a flattened one-dimensional array. A copy is made only if needed.

The optional keyword parameter "order" can be 'C','F', 'A', or 'K'

'C': C-like order, with the last axis index changing fastest, back to the first axis index changing slowest. "C" is
the default!

'F': Fortran-like index order with the first index changing fastest, and the last index changing slowest.

'A': Fortran-like index order if the array "a" is Fortran contiguous in memory, C-like order otherwise.

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
[ 0  8 16  2 10 18  4 12 20  6 14 22  1  9 17  3 11 19  5 13 21
7 15 23]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
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'K': read the elements in the order they occur in memory, except for reversing the data when strides are
negative.

print(A.ravel())

print(A.ravel(order="A"))

print(A.ravel(order="F"))

print(A.ravel(order="A"))

print(A.ravel(order="K"))

RESHAPE

The method reshape() gives a new shape to an array without changing its data, i.e. it returns a new array with a
new shape.

reshape(a, newshape, order='C')

Parameter Meaning

a array_like, Array to be reshaped.

newshape int or tuple of ints

order 'C', 'F', 'A', like in flatten or ravel

X = np.array(range(24))
Y = X.reshape((3,4,2))
Y

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
[ 0  8 16  2 10 18  4 12 20  6 14 22  1  9 17  3 11 19  5 13 21
7 15 23]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 2
1 22 23]
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CONCATENATING ARRAYS

In the following example we concatenate three one-dimensional arrays to one array. The elements of the
second array are appended to the first array. After this the elements of the third array are appended:

x = np.array([11,22])
y = np.array([18,7,6])
z = np.array([1,3,5])
c = np.concatenate((x,y,z))
print(c)

If we are concatenating multidimensional arrays, we can concatenate the arrays according to axis. Arrays must
have the same shape to be concatenated with concatenate(). In the case of multidimensional arrays, we can
arrange them according to the axis. The default value is axis = 0:

x = np.array(range(24))
x = x.reshape((3,4,2))
y = np.array(range(100,124))
y = y.reshape((3,4,2))
z = np.concatenate((x,y))
print(z)

Output: array([[[ 0,  1],
[ 2,  3],
[ 4,  5],
[ 6,  7]],

[[ 8,  9],
[10, 11],
[12, 13],
[14, 15]],

[[16, 17],
[18, 19],
[20, 21],
[22, 23]]])

[11 22 18  7  6  1  3  5]
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We do the same concatenation now with axis=1:

z = np.concatenate((x,y),axis = 1)
print(z)

[[[  0   1]
[  2   3]
[  4   5]
[  6   7]]

[[  8   9]
[ 10  11]
[ 12  13]
[ 14  15]]

[[ 16  17]
[ 18  19]
[ 20  21]
[ 22  23]]

[[100 101]
[102 103]
[104 105]
[106 107]]

[[108 109]
[110 111]
[112 113]
[114 115]]

[[116 117]
[118 119]
[120 121]
[122 123]]]
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ADDING NEW DIMENSIONS

New dimensions can be added to an array by using slicing and np.newaxis. We illustrate this technique with an
example:

x = np.array([2,5,18,14,4])
y = x[:, np.newaxis]
print(y)

[[[  0   1]
[  2   3]
[  4   5]
[  6   7]
[100 101]
[102 103]
[104 105]
[106 107]]

[[  8   9]
[ 10  11]
[ 12  13]
[ 14  15]
[108 109]
[110 111]
[112 113]
[114 115]]

[[ 16  17]
[ 18  19]
[ 20  21]
[ 22  23]
[116 117]
[118 119]
[120 121]
[122 123]]]

[[ 2]
[ 5]
[18]
[14]
[ 4]]
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VECTOR STACKING
A = np.array([3, 4, 5])
B = np.array([1,9,0])

print(np.row_stack((A, B)))

print(np.column_stack((A, B)))
np.shape(A)

A = np.array([[3, 4, 5],
[1, 9, 0],
[4, 6, 8]])

np.column_stack((A, A, A))

np.column_stack((A[0], A[0], A[0]))

np.dstack((A, A, A))

[[3 4 5]
[1 9 0]]

[[3 1]
[4 9]
[5 0]]

Output: (3,)

Output: array([[3, 4, 5, 3, 4, 5, 3, 4, 5],
[1, 9, 0, 1, 9, 0, 1, 9, 0],
[4, 6, 8, 4, 6, 8, 4, 6, 8]])

Output: array([[3, 3, 3],
[4, 4, 4],
[5, 5, 5]])
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REPEATING PATTERNS, THE "TILE" METHOD

Sometimes, you want to or have to create a new matrix by repeating an existing matrix multiple times to create
a new matrix with a different shape or even dimension. You may have for example a one-dimensional array
array([ 3.4]) and you want to turn it into an array array([ 3.4,  3.4,  3.4,  3.4,
3.4])

In another usecase you may have a two-dimensional array like np.array([ [1, 2], [3, 4]]) ,
which you intend to use as a building block to construe the array with the shape (6, 8):

array([[1, 2, 1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 4, 3, 4],
[1, 2, 1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 4, 3, 4],
[1, 2, 1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 4, 3, 4]])

The idea of construction is depicted in the following diagram:

Output: array([[[3, 3, 3],
[4, 4, 4],
[5, 5, 5]],

[[1, 1, 1],
[9, 9, 9],
[0, 0, 0]],

[[4, 4, 4],
[6, 6, 6],
[8, 8, 8]]])
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If this reminds you of tiling a bathroom or a kitchen, you are on the right track: The function which Numpy
provides for this task is called "tile".

The formal syntax of tile looks like this:

tile(A, reps)

An array is constructed by repeating A the number of times given by reps.

'reps' is usually a tuple (or list) which defines the number of repetitions along the corresponding axis /
directions. if we set reps to (3, 4) for example, A will be repeated 3 times for the "rows" and 4 times in the
direction of the columna. We demonstrate this in the following example:

import numpy as np
x = np.array([ [1, 2], [3, 4]])
np.tile(x, (3,4))

import numpy as np
x = np.array([ 3.4])

y = np.tile(x, (5,))

print(y)

Output: array([[1, 2, 1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 4, 3, 4],
[1, 2, 1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 4, 3, 4],
[1, 2, 1, 2, 1, 2, 1, 2],
[3, 4, 3, 4, 3, 4, 3, 4]])
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In the previous tile example, we could have written y = np.tile(x, 5) as well.

If we stick to writing reps in the tuple or list form, or consider reps = 5 as an abbreviation for reps =
(5,) , the following is true:

If 'reps' has length n, the dimension of the resulting array will be the maximum of n and A.ndim.

If 'A.ndim < n, 'A' is promoted to be n-dimensional by prepending new axes. So a shape (5,) array is promoted
to (1, 5) for 2-D replication, or shape (1, 1, 5) for 3-D replication. If this is not the desired behavior, promote
'A' to n-dimensions manually before calling this function.

If 'A.ndim > d', 'reps' is promoted to 'A'.ndim by pre-pending 1's to it.

Thus for an array 'A' of shape (2, 3, 4, 5), a 'reps' of (2, 2) is treated as (1, 1, 2, 2).

Further examples:

import numpy as np
x = np.array([[1, 2], [3, 4]])
print(np.tile(x, 2))

import numpy as np
x = np.array([[1, 2], [3, 4]])
print(np.tile(x, (2, 1)))

import numpy as np
x = np.array([[1, 2], [3, 4]])
print(np.tile(x, (2, 2)))

[ 3.4  3.4  3.4  3.4  3.4]

[[1 2 1 2]
[3 4 3 4]]

[[1 2]
[3 4]
[1 2]
[3 4]]

[[1 2 1 2]
[3 4 3 4]
[1 2 1 2]
[3 4 3 4]]
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P Y T H O N ,  R A N D O M  N U M B E R S  A N D
P R O B A B I L I T Y

INTRODUCTION

"Every American should have above average income, and my
Administration is going to see they get it."

This saying is attributed to Bill Clinton on umpteen websites.
Usually, there is no context given, so it is not clear, if he might
have meant it as a "joke". Whatever his intentions might have
been, we quoted him to show a "real" life example of statistics.
Statistics and probability calculation is all around us in real-life
situations. We have to cope with it whenever we have to make a
decision from various options. Can we go for a hike in the
afternoon or will it rain? The weather forecast tells us, that the
probability of precipitation will be 30 %. So what now? Will we
go for a hike?
Another situation: Every week you play the lottery and dream of a far away island. What is the likelihood of
winning the Jackpot so that you will never have to work again and live in "paradise"? Now imagine that you
right on this island of your dreams. Most probably not because you won the jackpot, but rather because you
booked your time as an all-inclusive holiday package. You are on holiday on a paradisal island far from home.
Suddenly, you meet your neighbor, spoiling in a jiffy all dreams. Against all odds?
Uncertainty is all araound us, yet only few people understand the basics of probability theory.

The programming language Python and even the numerical modules Numpy and Scipy will not help us in
understanding the everyday problems mentioned above, but Python and Numpy provide us with powerful
functionalities to calculate problems from statistics and probability theory.

RANDOM NUMBERS WITH PYTHON

THE RANDOM AND THE "SECRETS" MODULES

There is an explicit warning in the documentation of the random module:

Warning:
Note that the pseudo-random generators in the random module should NOT be used for security purposes. Use
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secrets on Python 3.6+ and os.urandom() on Python 3.5 and earlier.

The default pseudo-random number generator of the random module was designed with the focus on
modelling and simulation, not on security. So, you shouldn't generate sensitive information such as passwords,
secure tokens, session keys and similar things by using random. When we say that you shouldn't use the
random module, we mean the basic functionalities "randint", "random", "choise" , and the likes. There is one
exception as you will learn in the next paragraph: SystemRandom

The SystemRandom class offers a suitable way to overcome this security problem. The methods of this class
use an alternate random number generator, which uses tools provided by the operating system (such as /dev/
urandom on Unix or CryptGenRandom on Windows.

As there has been great concern that Python developers might inadvertently make serious security errors, -
even though the warning is included in the documentaiton, - Python 3.6 comes with a new module "secrets"
with a CSPRNG (Cryptographically Strong Pseudo Random Number Generator).

Let's start with creating random float numbers with the random function of the random module. Please
remember that it shouldn't be used to generate sensitive information:

import random
random_number = random.random()
print(random_number)

We will show an alternative and secure approach in the following example, in which we will use the class
SystemRandom of the random module. It will use a different random number generator. It uses sources which
are provided by the operating system. This will be /dev/urandom on Unix and CryptGenRandom on windows.
The random method of the SystemRandom class generates a float number in the range from 0.0 (included) to
1.0 (not included):

from random import SystemRandom
crypto = SystemRandom()
print(crypto.random())

GENERATE A LIST OF RANDOM NUMBERS

Quite often you will need more than one random number. We can create a list of random numbers by
repeatedly calling random().

import random
def random_list(n, secure=True):

random_floats = []

0.34330263184538523

0.8875057137654113
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if secure:
crypto = random.SystemRandom()
random_float = crypto.random

else:
random_float = random.random

for _ in range(n):
random_floats.append(random_float())

return random_floats

print(random_list(10, secure=False))

The "simple" random function of the random module is a lot faster as we can see in the following:

%%timeit
random_list(100)

%%timeit
random_list(100, secure=False)

crypto = random.SystemRandom()
[crypto.random() for _ in range(10)]

Alternatively, you can use a list comprehension to create a list of random float numbers:

%%timeit

[0.9702685982962019, 0.5095131905323179, 0.9324278634720967, 0.975
0405405778308, 0.9750927470224396, 0.2383439553695087, 0.035916944
33088444, 0.9203791901577599, 0.07793301506800698, 0.4691524576406
6404]

10000 loops, best of 3: 158 µs per loop

100000 loops, best of 3: 8.64 µs per loop

Output: [0.5832874631978111,
0.7494815897496974,
0.6982338101218046,
0.5164288598133177,
0.15423895558995826,
0.9447842390510461,
0.08095707071826808,
0.5407159221282145,
0.6124979567571185,
0.15764744205801628]
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[crypto.random() for _ in range(100)]

The fastest and most efficient way will be using the random package of the numpy module:

import numpy as np
np.random.random(10)

%%timeit
np.random.random(100)

Warning:
The random package of the Numpy module apparantly - even though it doesn't say so in the documentation -
is completely deterministic, using also the Mersenne twister sequence!

RANDOM NUMBERS SATISFYING SUM-TO-ONE CONDITION

It's very easy to create a list of random numbers satisfying the condition that they sum up to one. This way, we
turn them into values, which could be used as probalities. We can use any of the methods explained above to
normalize a list of random values. All we have to do is divide every value by the sum of the values. The
easiest way will be using numpy again of course:

import numpy as np
list_of_random_floats = np.random.random(100)
sum_of_values = list_of_random_floats.sum()
print(sum_of_values)
normalized_values = list_of_random_floats / sum_of_values

10000 loops, best of 3: 157 µs per loop

Output: array([ 0.0422172 ,  0.98285327,  0.40386413,  0.34629582,
0.25666744,

0.69242112,  0.9231164 ,  0.47445382,  0.63654389,
0.06781786])

The slowest run took 16.56 times longer than the fastest. This cou
ld mean that an intermediate result is being cached.
100000 loops, best of 3: 2.1 µs per loop
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print(normalized_values.sum())

GENERATING RANDOM STRINGS OR PASSWORDS WITH PYTHON

We assume that you don't use and don't like weak passwords like "123456", "password", "qwerty" and the
likes. Believe it or not, these passwords are always ranking to 10. So you looking for a safe password? You
want to create passwords with Python? But don't use some of the functions ranking top 10 in the search
results, because you may use a functions using the random function of the random module.

We will define a strong random password generator, which uses the SystemRandom class. This class uses, as
we have alreay mentioned, a cryptographically strong pseudo random number generator:

from random import SystemRandom
sr = SystemRandom() # create an instance of the SystemRandom class

def generate_password(length,
valid_chars=None):

""" generate_password(length, check_char) -> password
length: the length of the created password
check_char: a Boolean function used to check the validity

of a char
"""
if valid_chars==None:

valid_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
valid_chars += valid_chars.lower() + "0123456789"

password = ""
counter = 0
while counter < length:

rnum = sr.randint(0, 128)
char = chr(rnum)
if char in valid_chars:

password += chr(rnum)
counter += 1

return password

print("Automatically generated password by Python: " + generate_pa

52.3509839137
1.0
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ssword(15))

RANDOM INTEGER NUMBERS

Everybody is familar with creating random integer numbers without computers. If you roll a die, you create a
random number between 1 and 6. In terms of probability theory, we would call "the rolling of the die" an
experiment with a result from the set of possible outcomes {1, 2, 3, 4, 5, 6}. It is also called the sample space
of the experiment.

How can we simulate the rolling of a die in Python? We don't need Numpy for this aim. "Pure" Python and its
random module is enough.

import random
outcome = random.randint(1,6)
print(outcome)

Let's roll our virtual die 10 times:

import random
[ random.randint(1, 6) for _ in range(10) ]

We can accomplish this easier with the NumPy package random:

import numpy as np
outcome = np.random.randint(1, 7, size=10)
print(outcome)

You may have noticed, that we used 7 instead of 6 as the second parameter. randint from numpy.random uses a
"half-open" interval unlike randint from the Python random module, which uses a closed interval!

Automatically generated password by Python: ll6Zki280gfUqMD

4

Output: [2, 1, 5, 5, 6, 5, 4, 4, 1, 1]

[6 6 6 1 3 6 2 5 3 3]
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The formal definition:

numpy.random.randint(low, high=None, size=None)

This function returns random integers from 'low' (inclusive) to 'high' (exclusive). In other words: randint
returns random integers from the "discrete uniform" distribution in the "half-open" interval ['low', 'high'). If
'high' is None or not given in the call, the results will range from [0, 'low'). The parameter 'size' defines the
shape of the output. If 'size' is None, a single int will be the output. Otherwise the result will be an array. The
parameter 'size' defines the shape of this array. So size should be a tuple. If size is defined as an integer n, this
is considered to be the tuple (n,).

The following examples will clarify the behavior of the parameters:

import numpy as np
print(np.random.randint(1, 7))
print(np.random.randint(1, 7, size=1))
print(np.random.randint(1, 7, size=10))
print(np.random.randint(1, 7, size=(10,))) # the same as the previ
ous one
print(np.random.randint(1, 7, size=(5, 4)))

Simulating the rolling of a die is usually not a security-relevant issue, but if you want to create
cryptographically strong pseudo random numbers you should use the SystemRandom class again:

import random
crypto = random.SystemRandom()

[ crypto.randint(1, 6) for _ in range(10) ]

We have learned how to simulate the rolling of a die with Python. We assumed that our die is fair, i.e. the
probability for each face is equal to 1/6. How can we simulate throwing a crooked or loaded die? The randint

5
[3]
[1 4 3 5 5 1 5 4 5 6]
[2 1 4 3 2 1 6 5 3 3]
[[4 1 3 1]
[6 4 5 6]
[2 5 5 1]
[4 3 2 3]
[6 2 6 5]]

Output: [2, 1, 6, 4, 5, 6, 2, 5, 2, 1]
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methods of both modules are not suitable for this purpose. We will write some functions in the following text
to solve this problem.

First we want to have a look at other useful functions of the random module.

RANDOM CHOICES WITH PYTHON

"Having a choice" or "having choices" in real life is better than not having a choice. Even though some people
might complain, if they have too much of a choice. Life means making decisions. There are simple choices
like "Do I want a boiled egg?", "Soft or Hard boiled?" "Do I go to the cinema, theater or museum? Other
choices may have further reaching consequences like choosing the right job, study or what is the best
programming language to learn.

Let's do it with Python. The random module contains the right function for this purpose.This function can be
used to choose a random element from a non-empty sequence.

This means that we are capable of picking a random character from a string or a random element from a list or
a tuple, as we can see in the following examples. You want to have a city trip within Europe and you can't
decide where to go? Let Python help you:

from random import choice

possible_destinations = ["Berlin", "Hamburg", "Munich",
"Amsterdam", "London", "Paris",
"Zurich", "Heidelberg", "Strasbourg",
"Augsburg", "Milan", "Rome"]

print(choice(possible_destinations))

The choice function of the random package of the numpy module is more convenient, because it provides
further possibilities. The default call, i.e. no further parameters are used, behaves like choice of the random
module:

from numpy.random import choice

print(choice(possible_destinations))

Strasbourg

Augsburg

PYTHON, RANDOM NUMBERS AND PROBABILITY 86



With the help of the parameter "size" we can create a numpy.ndarray with choice values:

x1 = choice(possible_destinations, size=3)
print(x1)
x2 = choice(possible_destinations, size=(3, 4))
print(x2)

You might have noticed that the city names can have multiple occurrences. We can prevent this by setting the
optional parameter "replace" to "False":

print(choice(possible_destinations, size=(3, 4), replace=False))

Setting the "size" parameter to a non None value, leads us to the sample function.

RANDOM SAMPLES WITH PYTHON

A sample can be understood as a representative part from a larger group, usually called a "population".

The module numpy.random contains a function random_sample, which returns random floats in the half open
interval [0.0, 1.0). The results are from the "continuous uniform" distribution over the stated interval. This
function takes just one parameter "size", which defines the output shape. If we set size to (3, 4) e.g., we will
get an array with the shape (3, 4) filled with random elements:

import numpy as np
x = np.random.random_sample((3, 4))
print(x)

['London' 'Augsburg' 'London']
[['Strasbourg' 'London' 'Rome' 'Berlin']
['Berlin' 'Paris' 'Munich' 'Augsburg']
['Heidelberg' 'Paris' 'Berlin' 'Rome']]

[['Heidelberg' 'London' 'Milan' 'Munich']
['Hamburg' 'Augsburg' 'Paris' 'Rome']
['Berlin' 'Strasbourg' 'Zurich' 'Amsterdam']]
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If we call random_sample with an integer, we get a one-dimensional array. An integer has the same effect as if
we use a one-tuple as an argument:

x = np.random.random_sample(7)
print(x)

y = np.random.random_sample((7,))
print(y)

You can also generate arrays with values from an arbitrary interval [a, b), where a has to be less than b. It can
be done like this:

(b - a) * random_sample() + a

Example:

a = -3.4
b = 5.9

A = (b - a) * np.random.random_sample((3, 4)) + a

print(A)

The standard module random of Python has a more general function "sample", which produces samples from a
population. The population can be a sequence or a set.

The syntax of sample:

sample(population, k)

[[ 0.99824096  0.30837203  0.85396161  0.84814744]
[ 0.45516418  0.64925709  0.19576679  0.8124502 ]
[ 0.45498107  0.20100427  0.42826199  0.57355053]]

[ 0.07729483  0.07947532  0.27405822  0.34425005  0.2968612   0.27
234156

0.41580785]
[ 0.19791769  0.64537929  0.02809775  0.2947372   0.5873195   0.55
059448

0.98943354]

[[ 5.87026891 -0.13166798  5.56074144  3.48789786]
[-2.2764547   4.84050253  0.71734827 -0.7357672 ]
[ 5.8468095   4.56323308  0.05313938 -1.99266987]]
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The function creates a list, which contains "k" elements from the "population". The result list contains no
multiple occurrences, if the the population contains no multiple occurrences.

If you want to choose a sample within a range of integers, you can - or better you should - use range as the
argument for the population.

In the following example we produce six numbers out of the range from 1 to 49 (inclusive). This corresponds
to a drawing of the German lottery:

import random
print(random.sample(range(1, 50), 6))

TRUE RANDOM NUMBERS

Have you ever played a game of dice and asked yourself, if something is wrong with the die? You rolled the
die for so many times and you still haven't got a certain value like 6 for example.

You may also have asked yourself, if the random modules of Python can create "real" or "true" random
numbers, which are e.g. equivalent to an ideal die. The truth is that most random numbers used in computer
programs are pseudo-random. The numbers are generated in a predictable way, because the algorithm is
deterministic. Pseudo-random numbers are good enough for many purposes, but it may not be "true" random
rolling dice or lottery drawings.

The website RANDOM.ORG claims to offer true random numbers. They use the randomness which comes
from atmospheric noise. The numbers created this way are for many purposes better than the pseudo-random
number algorithms typically used in computer programs.

[27, 36, 29, 7, 18, 45]
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In the previous chapter of our tutorial, we introduced the
random module. We got to know the functions 'choice' and
'sample'. We used 'choice' to choose a random element from
a non-empty sequence and 'sample' to chooses k unique
random elements from a population sequence or set. The
probality for all elements is evenly distributed, i.e. each
element has of the sequences or sets have the same
probability to be chosen. This is exactly what we want, if we
simulate the rolling of dice. But what about loaded dice?
Loaded dice are designed to favor some results over others
for whatever reasons. In our previous chapter we had a look
at the following examples:

W E I G H T E D  P R O B A B I L I T I E S

INTRODUCTION

from random import choice, sample

print(choice("abcdefghij"))

professions = ["scientist", "philoso
pher", "engineer", "priest"]
print(choice(professions))

print(choice(("beginner", "intermediate", "advanced")))

# rolling one die
x = choice(range(1, 7))
print("The dice shows: " + str(x))

# rolling two dice:
dice = sample(range(1, 7), 2)
print("The two dice show: " + str(dice))

Like we said before, the chances for the elements of the sequence to be chosen are evenly distributed. So the
chances for getting a 'scientist' as a return value of the call choice(professions) is 1/4. This is out of touch with

c
philosopher
advanced
The dice shows: 4
The two dice show: [6, 1]
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reality. There are surely more scientists and engineers in the world than there are priests and philosophers. Just
like with the loaded die, we have again the need of a weighted choice.

We will devise a function "weighted_choice", which returns a random element from a sequence like
random.choice, but the elements of the sequence will be weighted.

WEIGHTED RANDOM CHOICES

We will define now the weighted choice function. Let's assume that we have three weights, e.g. 1/5, 1/2, 3/10.
We can build the cumulative sum of the weights with np.cumsum(weights).

import numpy as np
weights = [0.2, 0.5, 0.3]
cum_weights = [0] + list(np.cumsum(weights))
print(cum_weights)

If we create a random number x between 0 and 1 by using random.random(), the probability for x to lie within
the interval [0, cum_weights[0]) is equal to 1/5. The probability for x to lie within the interval
[cum_weights[0], cum_weights[1]) is equal to 1/2 and finally, the probability for x to lie within the interval
[cum_weights[1], cum_weights[2]) is 3/10.

Now you are able to understand the basic idea of how weighted_choice operates:

import numpy as np
import random
from random import random

def weighted_choice(objects, weights):
""" returns randomly an element from the sequence of 'object

s',
the likelihood of the objects is weighted according
to the sequence of 'weights', i.e. percentages."""

weights = np.array(weights, dtype=np.float64)

[0, 0.20000000000000001, 0.69999999999999996, 1.0]
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sum_of_weights = weights.sum()
# standardization:
np.multiply(weights, 1 / sum_of_weights, weights)
weights = weights.cumsum()
x = random()
for i in range(len(weights)):

if x < weights[i]:
return objects[i]

Example:

We can use the function weighted_choice for the following task:

Suppose, we have a "loaded" die with P(6)=3/12 and P(1)=1/12. The probability for the outcomes of all the
other possibilities is equally likely, i.e. P(2) = P(3) = P(4) = P(5) = p.

We can calculate p with

1 - P(1) - P(6) = 4 x p

that means

p = 1 / 6

How can we simulate this die with our weighted_choice function?

We call weighted_choice with 'faces_of_die' and the 'weights' list. Each call correspondents to a throw of the
loaded die.

We can show that if we throw the die a large number of times, for example 10,000 times, we get roughly the
probability values of the weights:

from collections import Counter

faces_of_die = [1, 2, 3, 4, 5, 6]
weights = [1/12, 1/6, 1/6, 1/6, 1/6, 3/12]

outcomes = []
n = 10000
for _ in range(n):

outcomes.append(weighted_choice(faces_of_die, weights))

c = Counter(outcomes)
for key in c:

c[key] = c[key] / n

print(sorted(c.values()), sum(c.values()))
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We can also use list of strings with our 'weighted_choice' function.

We define a list of cities and a list with their corresponding populations. The probability of a city to be chosen
should be according to their size:

cities = ["Frankfurt",
"Stuttgart",
"Freiburg",
"München",
"Zürich",
"Hamburg"]

populations = [736000, 628000, 228000, 1450000, 409241, 1841179]
total = sum(populations)
weights = [ round(pop / total, 2) for pop in populations]
print(weights)
for i in range(10):

print(weighted_choice(cities, populations))

WEIGHTED RANDOM CHOICE WITH NUMPY

To produce a weighted choice of an array like object, we can also use the choice function of the
numpy.random package. Actually, you should use functions from well-established module like 'NumPy'
instead of reinventing the wheel by writing your own code. In addition the 'choice' function from NumPy can
do even more. It generates a random sample from a given 1-D array or array like object like a list, tuple and so
on. The function can be called with four parameters:

choice(a, size=None, replace=True, p=None)

[0.0832, 0.1601, 0.1614, 0.1665, 0.1694, 0.2594] 1.0

[0.14, 0.12, 0.04, 0.27, 0.08, 0.35]
Frankfurt
Hamburg
Stuttgart
Hamburg
Hamburg
Zürich
München
Stuttgart
München
Frankfurt
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Parameter Meaning

a
a 1-dimensional array-like object or an int. If it is an array-like object, the function will return a random sample from

the elements. If it is an int, it behaves as if we called it with np.arange(a)

size
This is an optional parameter defining the output shape. If the given shape is, e.g., (m, n, k) , then m * n *

k samples are drawn. The Default is None, in which case a single value will be returned.

replace An optional boolean parameter. It is used to define whether the output sample will be with or without replacements.

p
An optional 1-dimensional array-like object, which contains the probabilities associated with each entry in a. If it is

not given the sample assumes a uniform distribution over all entries in a.

We will base our first exercise on the popularity of programming language as stated by the "Tiobe index"1:

from numpy.random import choice

professions = ["scientist",
"philosopher",
"engineer",
"priest",
"programmer"]

probabilities = [0.2, 0.05, 0.3, 0.15, 0.3]

choice(professions, p=probabilities)

Let us use the function choice to create a sample from our professions. To get two professions chosen, we set
the size parameter to the shape (2, ) . In this case multiple occurances are possible. The top ten
programming languages in August 2019 were:

Programming Language Percentage in August 2019 Change to August 2018

Java 16.028% -0.85%

C 15.154% +0.19%

Python 10.020% +3.03%

Output: 'programmer'
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Programming Language Percentage in August 2019 Change to August 2018

C++ 6.057% -1.41%

C# 3.842% +0.30%

Visual Basic .NET 3.695% -1.07%

JavaScript 2.258% -0.15%

PHP 2.075% -0.85%

Objective-C 1.690% +0.33%

SQL 1.625% -0.69%

Ruby 1.316% +0.13%

programming_languages = ["Java", "C", "Python", "C++"]
weights = np.array([16, 15.2, 10, 6.1])

# normalization
weights /= sum(weights)
print(weights)

for i in range(10):
print(choice(programming_languages, p=weights))

[0.33826638 0.32135307 0.21141649 0.12896406]
Java
C++
Python
Python
C
C++
C
C
Python
C
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WEIGHTED SAMPLE

In the previous chapter on random numbers and probability, we introduced the function 'sample' of the module
'random' to randomly extract a population or sample from a group of objects liks lists or tuples. Every object
had the same likelikhood to be drawn, i.e. to be part of the sample.

In real life situation there will be of course situation in which every or some objects will have different
probabilities. We will start again by defining a function on our own. This function will use the previously
defined 'weighted_choice' function.

def weighted_sample(population, weights, k):
"""
This function draws a random sample (without repeats)
of length k     from the sequence 'population' according
to the list of weights
"""
sample = set()
population = list(population)
weights = list(weights)
while len(sample) < k:

choice = weighted_choice(population, weights)
sample.add(choice)
index = population.index(choice)
weights.pop(index)
population.remove(choice)
weights = [ x / sum(weights) for x in weights]

return list(sample)

Example using the sample function:

Let's assume we have eight candies, coloured "red", "green", "blue", "yellow", "black", "white", "pink", and
"orange". Our friend Peter will have the "weighted" preference 1/24, 1/6, 1/6, 1/12, 1/12, 1/24, 1/8, 7/24 for
thes colours. He is allowed to take 3 candies:

candies = ["red", "green", "blue", "yellow", "black", "white", "pi
nk", "orange"]
weights = [ 1/24, 1/6, 1/6, 1/12, 1/12, 1/24, 1/8, 7/24]
for i in range(10):

print(weighted_sample(candies, weights, 3))
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Let's approximate the likelihood for an orange candy to be included in the sample:

n = 100000
orange_counter = 0
for i in range(n):

if "orange" in weighted_sample(candies, weights, 3):
orange_counter += 1

print(orange_counter / n)

It was completely unnecessary to write this function, because we can use the choice function of NumPy for
this purpose as well. All we have to do is assign the shape '(2, )' to the optional parameter 'size'. Let us redo the
previous example by substituting weighted_sampe with a call of np.random.choice:

n = 100000
orange_counter = 0
for i in range(n):

if "orange" in np.random.choice(candies,
p=weights,
size=(3,),
replace=False):

orange_counter += 1

print(orange_counter / n)

In addition, the function 'np.random.choice' gives us the possibility to allow repetitions, as we can see in the
following example:

countries = ["Germany", "Switzerland",

['green', 'orange', 'pink']
['green', 'orange', 'black']
['yellow', 'black', 'pink']
['red', 'green', 'yellow']
['yellow', 'black', 'pink']
['green', 'orange', 'yellow']
['red', 'blue', 'pink']
['white', 'yellow', 'pink']
['green', 'blue', 'pink']
['orange', 'blue', 'black']

0.71015

0.71276
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"Austria", "Netherlands",
"Belgium", "Poland",
"France", "Ireland"]

weights = np.array([83019200, 8555541, 8869537,
17338900, 11480534, 38413000,
67022000, 4857000])

weights = weights / sum(weights)

for i in range(4):
print(np.random.choice(countries,

p=weights,
size=(3,),
replace=True))

CARTESIAN CHOICE

The function cartesian_choice is named after the Cartesian product from set theory

CARTESIAN PRODUCT

The Cartesian product is an operation which returns a set from multiple sets. The result set from the Cartesian
product is called a "product set" or simply the "product".

For two sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B:

A x B = { (a, b) | a ∈ A and b ∈ B }

If we have n sets A1, A2, ... An, we can build the Cartesian product correspondingly:

A1 x A2 x ... x An = { (a1, a2, ... an) | a1 ∈ A1, a2 ∈ A2, ... an ∈ An]

The Cartesian product of n sets is sometimes called an n-fold Cartesian product.

CARTESIAN CHOICE: CARTESIAN_CHOICE

We will write now a function cartesian_choice, which takes an arbitrary number of iterables as arguments and

['Germany' 'Belgium' 'France']
['Poland' 'Poland' 'Poland']
['Germany' 'Austria' 'Poland']
['France' 'France' 'France']
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returns a list, which consists of random choices from each iterator in the respective order.

Mathematically, we can see the result of the function cartesian_choice as an element of the Cartesian product
of the iterables which have been passed as arguments.

import numpy as np
def cartesian_choice(*iterables):

"""
A list with random choices from each iterable of iterables
is being created in respective order.

The result list can be seen as an element of the
Cartesian product of the iterables
"""
res = []
for population in iterables:

res.append(np.random.choice(population))
return res

cartesian_choice(["The", "A"],
["red", "green", "blue", "yellow", "grey"],
["car", "house", "fish", "light"],
["smells", "dreams", "blinks", "shines"])

We define now a weighted version of the previously defined function:

import numpy as np
def weighted_cartesian_choice(*iterables):

"""
An arbitrary number of tuple or lists,
each consisting of population and weights.
weighted_cartesian_choice returns a list
with a chocie from each population
"""
res = []
for population, weights in iterables:

# normalize weight:
weights = np.array(weights) / sum(weights)
lst = np.random.choice(population, p=weights)

Output: ['The', 'green', 'house', 'shines']
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res.append(lst)
return res

determiners = (["The", "A", "Each", "Every", "No"],
[0.3, 0.3, 0.1, 0.1, 0.2])

colours = (["red", "green", "blue", "yellow", "grey"],
[0.1, 0.3, 0.3, 0.2, 0.2])

nouns = (["water", "elephant", "fish", "light", "programming langu
age"],

[0.3, 0.2, 0.1, 0.1, 0.3])
nouns2 = (["of happiness", "of chocolate", "of wisdom", "of challe
nges", "of air"],

[0.5, 0.2, 0.1, 0.1, 0.1])
verb_phrases = (["smells", "dreams", "thinks", "is made of"],

[0.4, 0.3, 0.2, 0.1])

print("It may or may not be true:")
for i in range(10):

res = weighted_cartesian_choice(determiners,
colours,
nouns,
verb_phrases,
nouns2)

print(" ".join(res) + ".")

We check in the following version, if the "probabilities" are all right:

import random
def weighted_cartesian_choice(*iterables):

"""
A list with weighted random choices from each iterable of iter

ables

It may or may not be true:
A grey light smells of happiness.
The green water smells of happiness.
A blue water smells of air.
The green elephant dreams of happiness.
A yellow fish smells of happiness.
The grey elephant dreams of air.
No grey programming language dreams of air.
Every blue elephant smells of happiness.
A blue light smells of air.
The grey programming language dreams of happiness.
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is being created in respective order
"""
res = []
for population, weight in iterables:

lst = weighted_choice(population, weight)
res.append(lst)

return res

determiners = (["The", "A", "Each", "Every", "No"],
[0.3, 0.3, 0.1, 0.1, 0.2])

colours = (["red", "green", "blue", "yellow", "grey"],
[0.1, 0.3, 0.3, 0.2, 0.2])

nouns = (["water", "elephant", "fish", "light", "programming langu
age"],

[0.3, 0.2, 0.1, 0.1, 0.3])
nouns2 = (["of happiness", "of chocolate", "of wisdom", "of challe
nges", "of air"],

[0.5, 0.2, 0.1, 0.1, 0.1])
verb_phrases = (["smells", "dreams", "thinks", "is made of"],

[0.4, 0.3, 0.2, 0.1])

print("It may or may not be true:")
sentences = []
for i in range(10000):

res = weighted_cartesian_choice(determiners,
colours,
nouns,
verb_phrases,
nouns2)

sentences.append(" ".join(res) + ".")

words = ["smells", "dreams", "thinks", "is made of"]
from collections import Counter
c = Counter()
for sentence in sentences:

for word in words:
if word in sentence:

c[word] += 1

wsum = sum(c.values())
for key in c:

print(key, c[key] / wsum)
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RANDOM SEED

A random seed, - also called "seed state", or just "seed" - is a number
used to initialize a pseudorandom number generator. When we called
random.random() we expected and got a random number between 0
and 1. random.random() calculates a new random number by using the
previously produced random number. What about the first time we use
random in our program? Yes, there is no previously created random
number. If a random number generator is called for the first time, it will
have to create a first "random" number.

If we seed a pseudo-random number generator, we provide a first
"previous" value. A seed value corresponds to a sequence of generated
values for a given random number generator. If you use the same seed
value again, you get and you can rely on getting the same sequence of
numbers again.

The seed number itself doesn't need to be randomly chosen so that the
algorithm creates values which follow a probability distribution in a
pseudorandom manner. Yet, the seed matters in terms of security. If you
know the seed, you could for example generate the secret encryption key which is based on this seed.

Random seeds are in many programming languages generated from the state of the computer system, which is
in lots of cases the system time.

This is true for Python as well. Help on random.seed says that if you call the function with None or no
argument it will seed "from current time or from an operating system specific randomness source if available."

import random
help(random.seed)

It may or may not be true:
thinks 0.2015
is made of 0.1039
smells 0.4016
dreams 0.293
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The seed functions allows you to get a determined sequence of random numbers. You can repeat this
sequence, whenever you need it again, e.g. for debugging purposes.

import random
random.seed(42)

for _ in range(10):
print(random.randint(1, 10), end=", ")

print("\nLet's create the same random numbers again:")
random.seed(42)
for _ in range(10):

print(random.randint(1, 10), end=", ")

RANDOM NUMBERS IN PYTHON WITH GAUSSIAN AND NORMALVARIATE
DISTRIBUTION

We want to create now 1000 random numbers between 130 and 230 that have a gaussian distribution with the
mean value mu set to 550 and the standard deviation sigma is set to 30.

Help on method seed in module random:

seed(a=None, version=2) method of random.Random instance
Initialize internal state from hashable object.

None or no argument seeds from current time or from an operati
ng

system specific randomness source if available.

For version 2 (the default), all of the bits are used if *a* i
s a str,

bytes, or bytearray.  For version 1, the hash() of *a* is use
d instead.

If *a* is an int, all bits are used.

2, 1, 5, 4, 4, 3, 2, 9, 2, 10,
Let's create the same random numbers again:
2, 1, 5, 4, 4, 3, 2, 9, 2, 10,
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from random import gauss

n = 1000

values = []
frequencies = {}

while len(values) < n:
value = gauss(180, 30)
if 130 < value < 230:

frequencies[int(value)] = frequencies.get(int(value), 0)
+ 1

values.append(value)

print(values[:10])

The following program plots the random values, which we have created before. We haven't covered matplotlib
so far, so it's not necessary to understand the code:

%matplotlib inline

import matplotlib.pyplot as plt
freq = list(frequencies.items())
freq.sort()

plt.plot(*list(zip(*freq)))

[173.49123947564414, 183.47654360102564, 186.96893210720162, 214.9
0676059797428, 199.69909520396007, 183.31521532331496, 157.8503519
2965537, 149.56012897536849, 187.39026585633607, 219.3324248161214
3]
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We do the same now with normvariate instead of gauss:

from random import normalvariate

n = 1000

values = []
frequencies = {}

while len(values) < n:
value = normalvariate(180, 30)
if 130 < value < 230:

frequencies[int(value)] = frequencies.get(int(value), 0)
+ 1

values.append(value)

freq = list(frequencies.items())
freq.sort()

plt.plot(*list(zip(*freq)))

Output: [<matplotlib.lines.Line2D at 0x7f282554a828>]
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EXERCISE WITH ZEROS AND ONES

It might be a good idea to write the following function as an exercise yourself. The function should be called
with a parameter p, which is a probabilty value between 0 and 1. The function returns a 1 with a probability of
p, i.e. ones in p percent and zeros in (1 - p) percent of the calls:

import random
def random_ones_and_zeros(p):

""" p: probability 0 <= p <= 1
returns a 1 with the probability p

"""
x = random.random()
if x < p:

return 1
else:

return 0

Let's test our little function:

n = 1000000
sum(random_ones_and_zeros(0.8) for i in range(n)) / n

Output: [<matplotlib.lines.Line2D at 0x7f2824fef1d0>]
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It might be a great idea to implement a task like this with a generator. If you are not familar with the way of
working of a Python generator, we recommend to consult our chapter on generators and iterators of our
Python tutorial.

import random
def random_ones_and_zeros(p):

while True:
x = random.random()
yield 1 if x < p else 0

def firstn(generator, n):
for i in range(n):

yield next(generator)
n = 1000000
sum(x for x in firstn(random_ones_and_zeros(0.8), n)) / n

Our generator random_ones_and_zeros can be seen as a sender, which emits ones and zeros with a probability
of p and (1-p) respectively.

We will write now another generator, which is receiving this bitstream. The task of this new generator is to
read the incoming bitstream and yield another bitstream with ones and zeros with a probability of 0.5 without

knowing or using the probability p. It should work for an arbitrary probability value p.2

def ebitter(bitstream):
while True:

bit1 = next(bitstre
am)

bit2 = next(bitstre
am)

if bit1 + bit2 ==
1:

bit3 = next(bitstream)
if bit2 + bit3 == 1:

yield 1
else:

yield 0

def ebitter2(bitstream):

Output: 0.800609

Output: 0.799762
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bit1 = next(bitstream)
bit2 = next(bitstream)
bit3 = next(bitstream)
while True:

if bit1 + bit2 == 1:
if bit2 + bit3 == 1:

yield 1
else:

yield 0
bit1, bit2, bit3 = bit2, bit3, next(bitstream)

n = 1000000
sum(x for x in firstn(ebitter(random_ones_and_zeros(0.8)), n)) / n

n = 1000000
sum(x for x in firstn(ebitter2(random_ones_and_zeros(0.8)), n)) /
n

Underlying theory:

Our first generator emits a bitstream B0, B1, B2,...

We check now an arbitrary pair of consecutive Bits Bi, Bi+1, ...

Such a pair can have the values 01, 10, 00 or 11. The probability P(01) = (p-1) x p and probability P(10) = p x
(p-1), so that the combined probabilty that the two consecutive bits are either 01 or 10 (or the sum of the two
bits is 1) is 2 x (p-1) x p

Now we look at another bit Bi+2. What is the probability that both

Bi + Bi+1 = 1

and

Bi+1 + Bi+2 = 1?

The possible outcomes satisfying these conditions and their corresponding probabilities can be found in the
following table:

Probability Bi Bi+1 Bi+2

Output: 0.49975

Output: 0.500011
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p2 x (1-p) 0 1 0

p x (1 - p)2 1 0 1

We will denote the outcome sum(Bi, Bi+1)=1 asX1 and correspondingly the outcome sum(Bi+1, Bi+2)=1 as X2

So, the joint probability P(X1, X2) = p2 x (1-p) + p x (1 - p)2 which can be rearranged to p x (1-p)

The conditional probability of X2 given X1:

P(X2 | X1) = P(X1, X2) / P(X2)

P(X2 | X1) = p x (1-p) / 2 x p x (1-p) = 1 / 2

SYNTHETICAL SALES FIGURES

In this subchapter we want to create a data file with sales figures. Imagine that we have a chain of shops in
various European and Canadian cities: Frankfurt, Munich, Berlin, Zurich, Hamburg, London, Toronto,
Strasbourg, Luxembourg, Amsterdam, Rotterdam, The Hague

We start with an array 'sales' of sales figures for the year 1997:

import numpy as np
sales = np.array([1245.89, 2220.00, 1635.77, 1936.25, 1002.03, 209
9.13, 723.99, 990.37, 541.44, 1765.00, 1802.84, 1999.00])

The aim is to create a comma separated list like the ones you get from Excel. The file should contain the sales
figures, we don't know, for all the shops, we don't have, spanning the year from 1997 to 2016.

We will add random values to our sales figures year after year. For this purpose we construct an array with
growthrates. The growthrates can vary between a minimal percent value (min_percent) and maximum percent
value (max_percent):

min_percent = 0.98 # corresponds to -1.5 %
max_percent = 1.06 # 6 %
growthrates = (max_percent - min_percent) * np.random.random_sampl
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e(12) + min_percent
print(growthrates)

To get the new sales figures after a year, we multiply the sales array "sales" with the array "growthrates":

sales * growthrates

To get a more sustainable sales development, we change the growthrates only every four years.

This is our complete program, which saves the data in a file called sales_figures.csv:

import numpy as np
fh = open("sales_figures.csv", "w")

fh.write("Year, Frankfurt, Munich, Berlin, Zurich, Hamburg, Londo
n, Toronto, Strasbourg, Luxembourg, Amsterdam, Rotterdam, The Hagu
e\n")
sales = np.array([1245.89, 2220.00, 1635.77, 1936.25, 1002.03, 209
9.13, 723.99, 990.37, 541.44, 1765.00, 1802.84, 1999.00])

for year in range(1997, 2016):
line = str(year) + ", " + ", ".join(map(str, sales))
fh.write(line + "\n")
if year % 4 == 0:

min_percent = 0.98 # corresponds to -1.5 %
max_percent = 1.06 # 6 %
growthrates = (max_percent - min_percent) * np.random.ran

dom_sample(12) + min_percent
#growthrates = 1 + (np.random.rand(12) * max_percent - ne

gative_max) / 100
sales = np.around(sales * growthrates, 2)

fh.close()

[ 1.03476561  1.00885095  1.00614899  1.05164581  1.0307091   0.98
822763

0.99366872  1.05810125  1.04798573  1.02784796  1.05035899  1.02
262023]

Output: array([ 1289.20412146,  2239.649113  ,  1645.82833205,  203
6.24919608,

1032.80143634,  2074.41825668,   719.40621318,  104
7.91173209,

567.42139317,  1814.15165757,  1893.62920988,  204
4.21783979])
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The result is in the file sales_figures.csv.

We will use this file in our chapter on reading and writing in Numpy.

EXERCISES

1. Let's do some more die rolling. Prove empirically - by writing a simulation program - that the
probability for the combined events "an even number is rolled" (E) and "A number greater than
2 is rolled" is 1/3.

2. The file ["universities_uk.txt"](universities_uk.txt) contains a list of universities in the United
Kingdom by enrollment from 2013-2014 (data from ([Wikepedia](https://en.wikipedia.org/wiki/
List_of_universities_in_the_United_Kingdom_by_enrollment#cite_note-1)). Write a function
which returns a tuple (universities, enrollments, total_number_of_students) with - universities:
list of University names - enrollments: corresponding list with enrollments -
total_number_of_students: over all universities Now you can enroll a 100,000 fictional students
with a likelihood corresponding to the real enrollments.

3.

Let me take you back in time and space in our next exercise.
We will travel back into ancient Pythonia (Πηθωνια). It was
the time when king Pysseus ruled as the benevolent dictator
for live. It was the time when Pysseus sent out his
messengers throughout the world to announce that the time
has come for his princes Anacondos (Ανακονδος), Cobrion
(Κομπριον), Boatos (Μποατος) and Addokles (Ανδοκλης) to
merry. So, they organized the toughest programming
contests amongst the fair and brave amazons, better known
as Pythonistas of Pythonia. Finally, only eleven amazons
were left to choose from:

1) The ethereal Airla (Αιρλα) 2) Barbara (Βαρβάρα), the
one from a foreign country. 3) Eos (Ηως), looking divine in
dawn 4) The sweet Glykeria (Γλυκερία) 5) The gracefull
Hanna (Αννα) 6) Helen (Ελενη), the light in the dark 7) The
good angel Agathangelos (Αγαθάγγελος) 8) the violet tinted cloud Iokaste (Ιοκάστη) 9) Medousa (Μέδουσα),
the guardian 10) the self-controlled Sofronia (Σωφρονία) 11) Andromeda (Ανδρομεδα), the one who thinks
man or a warrior.

On the day they arrived the chances to be drawn in the lottery are the same for every amazon, but Pysseus
wants the lottery to be postponed to some day in the future. The probability changes every day: It will be
lowered by 1/13 for the first seven amazones and it will be increased by 1/12 for the last four amazones.
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How long will the king have to wait until he can be more than 90 percent sure that his princes Anacondos,
Cobrion, Boatos and Addokles will be married to Iokaste, Medousa, Sofronia and Andromeda?

</li>

</ol>

SOLUTIONS TO OUR EXERCISES
1.

from random import randint

outcomes = [ randint(1, 6) for _ in range(10000)]

even_pips = [ x for x in outcomes if x % 2 == 0]
greater_two = [ x for x in outcomes if x > 2]

combined = [ x for x in outcomes if x % 2 == 0 and x > 2]

print(len(even_pips) / len(outcomes))
print(len(greater_two) / len(outcomes))
print(len(combined) / len(outcomes))

• At first we will write the function "process_datafile" to process our data file:

def process_datafile(filename):
""" process_datafile -> (universities,

enrollments,
total_number_of_students)

universities: list of University names
enrollments: corresponding list with enrollments
total_number_of_students: over all universities

"""

universities = []
enrollments = []
with open(filename) as fh:

0.5061
0.6719
0.3402
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total_number_of_students = 0
fh.readline() # get rid of descriptive first line
for line in fh:

line = line.strip()
*praefix, undergraduates, postgraduates, total = lin

e.rsplit()
university = praefix[1:]
total = int(total.replace(",", ""))
enrollments.append(total)
universities.append(" ".join(university))
total_number_of_students += total

return (universities, enrollments, total_number_of_students)

Let's start our function and check the results:

universities, enrollments, total_students = process_datafile("univ
ersities_uk.txt")

for i in range(14):
print(universities[i], end=": ")
print(enrollments[i])

print("Total number of students onrolled in the UK: ", total_stude
nts)

We want to enroll now a virtual student randomly to one of the universities. To get a weighted list suitable for
our weighted_choice function, we have to normalize the values in the list enrollments:

normalized_enrollments = [ students / total_students for students

Open University in England: 123490
University of Manchester: 37925
University of Nottingham: 33270
Sheffield Hallam University: 33100
University of Birmingham: 32335
Manchester Metropolitan University: 32160
University of Leeds: 30975
Cardiff University: 30180
University of South Wales: 29195
University College London: 28430
King's College London: 27645
University of Edinburgh: 27625
Northumbria University: 27565
University of Glasgow: 27390
Total number of students onrolled in the UK:  2299380
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in enrollments]

# enrolling a virtual student:
print(weighted_choice(universities, normalized_enrollments))

We have been asked by the exercise to "enroll" 100,000 fictional students. This can be easily accomplished
with a loop:

from collections import Counter

outcomes = []
n = 100000
for i in range(n):

outcomes.append(weighted_choice(universities, normalized_enrol
lments))

c = Counter(outcomes)

print(c.most_common(20))

</li>
•

The bunch of amazons is implemented as a list, while we choose a set for Pysseusses favorites. The weights at
the beginning are 1/11 for all, i.e. 1/len(amazons).

Every loop cycle corresponds to a new day. Every time we start a new loop cycle, we will draw "n" samples of
Pythonistas to calculate the ratio of the number of times the sample is equal to the king's favorites divided by
the number of times the sample doesn't match the king's idea of daughter-in-laws. This corresponds to the

University of Dundee

[('Open University in England', 5529), ('University of Mancheste
r', 1574), ('University of Nottingham', 1427), ('University of Bir
mingham', 1424), ('Sheffield Hallam University', 1410), ('Manchest
er Metropolitan University', 1408), ('Cardiff University', 1334),
('University of Leeds', 1312), ('University of South Wales', 126
4), ('University of Plymouth', 1218), ('University College Londo
n', 1209), ('Coventry University', 1209), ('University of the Wes
t of England', 1197), ('University of Edinburgh', 1196), ("King's
College London", 1183), ('University of Glasgow', 1181), ('Univers
ity of Central Lancashire', 1176), ('Nottingham Trent Universit
y', 1174), ('University of Sheffield', 1160), ('Northumbria Univer
sity', 1154)]
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probability "prob". We stop the first time, the probability is equal or larger than 0.9.

We can use both the function "weighted_same" and "weighted_sample_alternative" to do the drawing.

import time
amazons = ["Airla", "Barbara", "Eos",

"Glykeria", "Hanna", "Helen",
"Agathangelos", "Iokaste",
"Medousa", "Sofronia",
"Andromeda"]

weights = [ 1/len(amazons) for _ in range(len(amazons)) ]

Pytheusses_favorites = {"Iokaste", "Medousa",
"Sofronia", "Andromeda"}

n = 1000
counter = 0

prob = 1 / 330
days = 0
factor1 = 1 / 13
factor2 = 1 / 12

start = time.clock()
while prob < 0.9:

for i in range(n):
the_chosen_ones = weighted_sample_alternative(amazons, wei

ghts, 4)
if set(the_chosen_ones) == Pytheusses_favorites:

counter += 1
prob = counter / n
counter = 0
weights[:7] = [ p - p*factor1 for p in weights[:7] ]
weights[7:] = [ p + p*factor2 for p in weights[7:] ]
weights = [ x / sum(weights) for x in weights]
days += 1

print(time.clock() - start)

print("Number of days, he has to wait: ", days)
2.870792999999999
Number of days, he has to wait:  33
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Teh value for the number of days differs, if n is not large enough.

The following is a solutions without round-off errors. We will use Fraction from the module fractions.

import time
from fractions import Fraction

amazons = ["Airla", "Barbara", "Eos",
"Glykeria", "Hanna", "Helen",
"Agathangelos", "Iokaste",
"Medousa", "Sofronia",
"Andromeda"]

weights = [ Fraction(1, 11) for _ in range(len(amazons)) ]

Pytheusses_favorites = {"Iokaste", "Medousa",
"Sofronia", "Andromeda"}

n = 1000
counter = 0

prob = Fraction(1, 330)
days = 0
factor1 = Fraction(1, 13)
factor2 = Fraction(1, 12)

start = time.clock()
while prob < 0.9:

#print(prob)
for i in range(n):

the_chosen_ones = weighted_sample_alternative(amazons, wei
ghts, 4)

if set(the_chosen_ones) == Pytheusses_favorites:
counter += 1

prob = Fraction(counter, n)
counter = 0
weights[:7] = [ p - p*factor1 for p in weights[:7] ]
weights[7:] = [ p + p*factor2 for p in weights[7:] ]
weights = [ x / sum(weights) for x in weights]
days += 1

print(time.clock() - start)

print("Number of days, he has to wait: ", days)
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We can see that the solution with fractions is beautiful but very slow. Whereas the greater precision doesn't
play a role in our case.

So far, we haven't used the power of Numpy. We will do this in the next implementation of our problem:

import time
import numpy as np
amazons = ["Airla", "Barbara", "Eos",

"Glykeria", "Hanna", "Helen",
"Agathangelos", "Iokaste",
"Medousa", "Sofronia",
"Andromeda"]

weights = np.full(11, 1/len(amazons))

Pytheusses_favorites = {"Iokaste", "Medousa",
"Sofronia", "Andromeda"}

n = 1000
counter = 0

prob = 1 / 330
days = 0
factor1 = 1 / 13
factor2 = 1 / 12

start = time.clock()
while prob < 0.9:

for i in range(n):
the_chosen_ones = weighted_sample_alternative(amazons, wei

ghts, 4)
if set(the_chosen_ones) == Pytheusses_favorites:

counter += 1
prob = counter / n
counter = 0
weights[:7] = weights[:7] - weights[:7] * factor1
weights[7:] = weights[7:] + weights[7:] * factor2
weights = weights / np.sum(weights)

35.920345
Number of days, he has to wait:  33
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#print(weights)
days += 1

print(time.clock() - start)

print("Number of days, he has to wait: ", days)

FOOTNOTES:

1 The TIOBE index or The TIOBE Programming Community index is - according to the website "an indicator
of the popularity of programming languages. The index is updated once a month. The ratings are based on the
number of skilled engineers world-wide, courses and third party vendors. Popular search engines such as
Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings. It is
important to note that the TIOBE index is not about the best programming language or the language in which
most lines of code have been written."

2 I am thankful to Dr. Hanno Baehr who introduced me to the problem of "Random extraction" when
participating in a Python training course in Nuremberg in January 2014. Hanno outlined some bits of the
theoretical framework. During a night session in a pub called "Zeit & Raum" (english: "Time & Space") I
implemented a corresponding Python program to back the theoretical solution empirically.

4.930090000000007
Number of days, he has to wait:  33
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S Y N T H E T I C A L  T E S T  D A T A  W I T H
P Y T H O N

DEFINITION OF SYNTHETICAL DATA

There is hardly any engineer or scientist who doesn't understand
the need for synthetical data, also called synthetic data. But
some may have asked themselves what do we understand by
synthetical test data? There are lots of situtations, where a
scientist or an engineer needs learn or test data, but it is hard or
impossible to get real data, i.e. a sample from a population
obtained by measurement. The task or challenge of creating
synthetical data consists in producing data which resembles or
comes quite close to the intended "real life" data. Python is an
ideal language for easily producing such data, because it has
powerful numerical and linguistic functionalities.

Synthetic data are also necessary to satisfy specific needs or
certain conditions that may not be found in the "real life" data.
Another use case of synthetical data is to protect privacy of the
data needed.

In our previous chapter "Python, Numpy and Probability", we
have written some functions, which we will need in the following:

• find_interval
• weighted_choice
• cartesian_choice
• weighted_cartesian_choice
• weighted_sample

You should be familiar with the way of working of these functions.

We saved the functions in a module with the name bk_random.

DEFINITION OF THE SCOPE OF SYNTHETIC DATA CREATION

We want to provide solutions to the following task:
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We have n finite sets containing data of various types:

D1, D2, ... Dn

The sets Di are the data sets from which we want to deduce our synthetical data.

In the actual implementation, the sets will be tuples or lists for practical reasons.

The process of creating synthetic data can be defined by two functions "synthesizer" and "synthesize".
Usually, the word synthesizer is used for a computerized electronic device which produces sound. Our
synthesizer produces strings or alternatively tuples with data, as we will see later.

The function synthesizer creates the function synthesize:

synthesize = synthesizer( (D1, D2, ... Dn) )

The function synthesize, - which may also be a generator like in our implementation, - takes no arguments and
the result of a function call sythesize() will be

• a list or a tuple t = (d1, d2, ... dn) where di is drawn at random from Di
• or a string which contains the elements str(d1), str(d2), ... str(dn) where di is also drawn at

random from Di

Let us start with a simple example. We have a list of firstnames and a list of surnames. We want to hire
employees for an institute or company. Of course, it will be a lot easier in our synthetical Python environment
to find and hire specialsts than in real life. The function "cartesian_choice" from the bk_random module and
the concatenation of the randomly drawn firstnames and surnames is all it takes.

import bk_random
firstnames = ["John", "Eve", "Jane", "Paul",

"Frank", "Laura", "Robert",
"Kathrin", "Roger", "Simone",
"Bernard", "Sarah", "Yvonne"]

surnames = ["Singer", "Miles", "Moore",
"Looper", "Rampman", "Chopman",
"Smiley", "Bychan", "Smith",
"Baker", "Miller", "Cook"]

number_of_specialists = 15

employees = set()
while len(employees) < number_of_specialists:

employee = bk_random.cartesian_choice(firstnames, surnames)
employees.add(" ".join(employee))

print(employees)
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This was easy enough, but we want to do it now in a more structured way, using the synthesizer approach we
mentioned before. The code for the case in which the parameter "weights" is not None is still missing in the
following implementation:

import bk_random
firstnames = ["John", "Eve", "Jane", "Paul",

"Frank", "Laura", "Robert",
"Kathrin", "Roger", "Simone",
"Bernard", "Sarah", "Yvonne"]

surnames = ["Singer", "Miles", "Moore",
"Looper", "Rampman", "Chopman",
"Smiley", "Bychan", "Smith",
"Baker", "Miller", "Cook"]

def synthesizer( data, weights=None, format_func=None, repeats=Tru
e):

"""
data is a tuple or list of lists or tuples containing the
data
weights is a list or tuple of lists or tuples with the
corresponding weights of the data lists or tuples
format_func is a reference to a function which defines
how a random result of the creator function will be formated.
If None, "creator" will return the list "res".
If repeats is set to True, the results of helper will not be u

nique
"""

def synthesize():
if not repeats:

memory = set()
while True:

res = bk_random.cartesian_choice(*data)
if not repeats:

sres = str(res)
while sres in memory:

res = bk_random.cartesian_choice(*data)
sres = str(res)

{'Laura Smith', 'Yvonne Miles', 'Sarah Cook', 'Jane Smith', 'Paul
Moore', 'Jane Miles', 'Jane Looper', 'Frank Singer', 'Frank Mile
s', 'Jane Cook', 'Frank Chopman', 'Laura Cook', 'Yvonne Bychan',
'Eve Miles', 'Simone Cook'}
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memory.add(sres)
if format_func:

yield format_func(res)
else:

yield res
return synthesize

recruit_employee = synthesizer( (firstnames, surnames),
format_func=lambda x: " ".joi

n(x),
repeats=False)

employee = recruit_employee()
for _ in range(15):

print(next(employee))

Every name, i.e first name and last name, had the same likehood to be drawn in the previous example. This is
not very realistic, because we will expect in countries like the US or England names like Smith and Miller to
occur more often than names like Rampman or Bychan. We will extend our synthesizer function with
additional code for the "weighted" case, i.e. weights is not None. If weights are given, we will have to use the
function weighted_cartesian_choice from the bk_random module. If "weights" is set to None, we will have to
call the function cartesian_choice. We put this decision into a different subfunction of synthesizer to keep the
function synthesize clearer.

We do not want to fiddle around with probabilites between 0 and 1 in defining the weights, so we take the
detour with integer, which we normalize afterwards.

from bk_random import cartesian_choice, weighted_cartesian_choice

Sarah Baker
Frank Smiley
Simone Smiley
Frank Bychan
Sarah Moore
Simone Chopman
Frank Chopman
Eve Rampman
Bernard Miller
Simone Bychan
Jane Singer
Roger Smith
John Baker
Robert Cook
Kathrin Cook
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weighted_firstnames = [ ("John", 80), ("Eve", 70), ("Jane", 2),
("Paul", 8), ("Frank", 20), ("Laura", 6),
("Robert", 17), ("Zoe", 3), ("Roger", 8),
("Edgar", 4), ("Susanne", 11), ("Dorothe

e", 22),
("Tim", 17), ("Donald", 12), ("Igor", 15),
("Simone", 9), ("Bernard", 8), ("Sarah",

7),
("Yvonne", 11), ("Bill", 12), ("Bernd", 1

0)]

weighted_surnames = [('Singer', 2), ('Miles', 2), ('Moore', 5),
('Strongman', 5), ('Romero', 3), ("Yiang",

4),
('Looper', 1), ('Rampman', 1), ('Chopman',

1),
('Smiley', 1), ('Bychan', 1), ('Smith', 15

0),
('Baker', 144), ('Miller', 87), ('Cook', 5),
('Joyce', 1), ('Bush', 5), ('Shorter', 6),
('Wagner', 10), ('Sundigos', 10), ('Firenz

e', 8),
('Puttner', 20), ('Faulkner', 10), ('Bowma

n', 11),
('Klein', 1), ('Jungster', 14), ("Warner", 1

4),
('Tiller', 9), ('Wogner', 10), ('Blumentha

l', 16)]

firstnames, weights = zip(*weighted_firstnames)
wsum = sum(weights)
weights_firstnames = [ x / wsum for x in weights]

surnames, weights = zip(*weighted_surnames)
wsum = sum(weights)
weights_surnames = [ x / wsum for x in weights]

weights = (weights_firstnames, weights_surnames)

def synthesizer( data, weights=None, format_func=None, repeats=Tru
e):

"""
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"data" is a tuple or list of lists or tuples containing the
data.

"weights" is a list or tuple of lists or tuples with the
corresponding weights of the data lists or tuples.

"format_func" is a reference to a function which defines
how a random result of the creator function will be formated.
If None,the generator "synthesize" will yield the list "res".

If "repeats" is set to True, the output values yielded by
"synthesize" will not be unique.
"""

def choice(data, weights):
if weights:

return weighted_cartesian_choice(*zip(data, weights))
else:

return cartesian_choice(*data)

def synthesize():
if not repeats:

memory = set()
while True:

res = choice(data, weights)
if not repeats:

sres = str(res)
while sres in memory:

res = choice(data, weights)
sres = str(res)

memory.add(sres)
if format_func:

yield format_func(res)
else:

yield res
return synthesize

recruit_employee = synthesizer( (firstnames, surnames),
weights = weights,
format_func=lambda x: " ".join(x),
repeats=False)

employee = recruit_employee()
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for _ in range(12):
print(next(employee))

WINE EXAMPLE

Let's imagine that you have to describe a dozen wines. Most
probably a nice imagination for many, but I have to admit that it
is not for me. The main reason is that I am not a wine drinker!

We can write a little Python program, which will use our
synthesize function to create automatically "sophisticated
criticisms" like this one:

This wine is light-bodied with a conveniently juicy bouquet
leading to a lingering flamboyant finish!

Try to find some adverbs, like "seamlessly", "assertively", and
some adjectives, like "fruity" and "refined", to describe the
aroma.

If you have defined your lists, you can use the synthesize
function.

Here is our solution, in case you don't want to do it on your own:

import bk_random
body = ['light-bodied', 'medium-bodied', 'full-bodied']

adverbs = ['appropriately', 'assertively', 'authoritatively',
'compellingly', 'completely', 'continually',

Frank Baker
Frank Smith
Eve Smith
Dorothee Baker
John Smith
Bill Bush
John Sundigos
Laura Blumenthal
Zoe Smith
Igor Baker
Bill Miller
Eve Baker
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'conveniently', 'credibly', 'distinctively',
'dramatically', 'dynamically', 'efficiently',
'energistically', 'enthusiastically', 'fungibly',
'globally', 'holisticly', 'interactively',
'intrinsically', 'monotonectally', 'objectively',
'phosfluorescently', 'proactively', 'professionally',
'progressively', 'quickly', 'rapidiously',
'seamlessly', 'synergistically', 'uniquely']

noun = ['aroma', 'bouquet', 'flavour']

aromas = ['angular', 'bright', 'lingering', 'butterscotch',
'buttery', 'chocolate', 'complex', 'earth', 'flabby',
'flamboyant', 'fleshy', 'flowers', 'food friendly',
'fruits', 'grass', 'herbs', 'jammy', 'juicy', 'mocha',
'oaked', 'refined', 'structured', 'tight', 'toast',
'toasty', 'tobacco', 'unctuous', 'unoaked', 'vanilla',
'velvetly']

example = """This wine is light-bodied with a completely buttery
bouquet leading to a lingering fruity  finish!"""

def describe(data):
body, adv, adj, noun, adj2 = data
format_str = "This wine is %s with a %s %s %s\nleading to"
format_str += " a lingering %s finish!"
return format_str % (body, adv, adj, noun, adj2)

t = bk_random.cartesian_choice(body, adverbs, aromas, noun, aroma
s)

data = (body, adverbs, aromas, noun, aromas)
synthesize = synthesizer( data, weights=None, format_func=describ
e, repeats=True)
criticism = synthesize()

for i in range(1, 13):
print("{0:d}. wine:".format(i))
print(next(criticism))
print()
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1. wine:
This wine is light-bodied with a progressively earth bouquet
leading to a lingering complex finish!

2. wine:
This wine is medium-bodied with a energistically unctuous bouquet
leading to a lingering vanilla finish!

3. wine:
This wine is medium-bodied with a synergistically flamboyant flavo
ur
leading to a lingering unoaked finish!

4. wine:
This wine is light-bodied with a uniquely toasty flavour
leading to a lingering juicy finish!

5. wine:
This wine is full-bodied with a holisticly flowers flavour
leading to a lingering tobacco finish!

6. wine:
This wine is full-bodied with a energistically toasty flavour
leading to a lingering chocolate finish!

7. wine:
This wine is full-bodied with a proactively tobacco bouquet
leading to a lingering velvetly finish!

8. wine:
This wine is full-bodied with a authoritatively mocha aroma
leading to a lingering juicy finish!

9. wine:
This wine is light-bodied with a dynamically vanilla flavour
leading to a lingering juicy finish!

10. wine:
This wine is medium-bodied with a dynamically structured flavour
leading to a lingering complex finish!

11. wine:
This wine is full-bodied with a distinctively fruits flavour
leading to a lingering complex finish!

12. wine:
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EXERCISE: INTERNATIONAL DISASTER OPERATION

It would be gorgeous, if the problem described in this exercise,
would be purely synthetic, i.e. there would be no further
catastophes in the world. Completely unrealistic, but a nice
daydream. So, the task of this exercise is to provide synthetical
test data for an international disaster operation. The countries
taking part in this mission might be e.g. France, Switzerland,
Germany, Canada, The Netherlands, The United States, Austria,
Belgium and Luxembourg.

We want to create a file with random entries of aides. Each line
should consist of:

UniqueIdentifier, FirstName, LastName, Country, Field

For example:

001, Jean-Paul,  Rennier, France, Medical Aid
002, Nathan, Bloomfield, Canada, Security Aid
003, Michael, Mayer, Germany, Social Worker

For practical reasons, we will reduce the countries to France, Italy, Switzerland and Germany in the following
example implementation:

from bk_random import cartesian_choice, weighted_cartesian_choice

countries = ["France", "Switzerland", "Germany"]

w_firstnames = { "France" : [ ("Marie", 10), ("Thomas", 10),
("Camille", 10), ("Nicolas", 9),
("Léa", 10), ("Julien", 9),
("Manon", 9), ("Quentin", 9),
("Chloé", 8), ("Maxime", 9),
("Laura", 7), ("Alexandre", 6),
("Clementine", 2), ("Grégory", 2),
("Sandra", 1), ("Philippe", 1)],

"Switzerland": [ ("Sarah", 10), ("Hans", 10),
("Laura", 9), ("Peter", 8),

This wine is medium-bodied with a conveniently tight aroma
leading to a lingering chocolate finish!
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("Mélissa", 9), ("Walter", 7),
("Océane", 7), ("Daniel", 7),
("Noémie", 6), ("Reto", 7),
("Laura", 7), ("Bruno", 6),
("Eva", 2), ("Urli", 4),
("Sandra", 1), ("Marcel", 1)],

"Germany": [ ("Ursula", 10), ("Peter", 10),
("Monika", 9), ("Michael", 8),
("Brigitte", 9), ("Thomas", 7),
("Stefanie", 7), ("Andreas", 7),
("Maria", 6), ("Wolfgang", 7),
("Gabriele", 7), ("Manfred", 6),
("Nicole", 2), ("Matthias", 4),
("Christine", 1), ("Dirk", 1)],

"Italy" : [ ("Francesco", 20), ("Alessandro", 19),
("Mattia", 19), ("Lorenzo", 18),
("Leonardo", 16), ("Andrea", 15),
("Gabriele", 14), ("Matteo", 14),
("Tommaso", 12), ("Riccardo", 11),
("Sofia", 20), ("Aurora", 18),
("Giulia", 16), ("Giorgia", 15),
("Alice", 14), ("Martina", 1

3)]}

w_surnames = { "France" : [ ("Matin", 10), ("Bernard", 10),
("Camille", 10), ("Nicolas", 9),
("Dubois", 10), ("Petit", 9),

("Durand", 8), ("Leroy", 8),
("Fournier", 7), ("Lambert", 6),
("Mercier", 5), ("Rousseau", 4),
("Mathieu", 2), ("Fontaine", 2),
("Muller", 1), ("Robin", 1)],

"Switzerland": [ ("Müller", 10), ("Meier", 10),
("Schmid", 9), ("Keller", 8),
("Weber", 9), ("Huber", 7),
("Schneider", 7), ("Meyer", 7),
("Steiner", 6), ("Fischer", 7),
("Gerber", 7), ("Brunner", 6),
("Baumann", 2), ("Frei", 4),
("Zimmermann", 1), ("Moser", 1)],

"Germany": [ ("Müller", 10), ("Schmidt", 10),
("Schneider", 9), ("Fischer", 8),
("Weber", 9), ("Meyer", 7),
("Wagner", 7), ("Becker", 7),
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("Schulz", 6), ("Hoffmann", 7),
("Schäfer", 7), ("Koch", 6),
("Bauer", 2), ("Richter", 4),
("Klein", 2), ("Schröder", 1)],

"Italy" : [ ("Rossi", 20), ("Russo", 19),
("Ferrari", 19), ("Esposito", 18),
("Bianchi", 16), ("Romano", 15),
("Colombo", 14), ("Ricci", 14),
("Marino", 12), ("Grecco", 11),
("Bruno", 10), ("Gallo", 12),
("Conti", 16), ("De Luca", 15),
("Costa", 14), ("Giordano", 13),
("Mancini", 14), ("Rizzo", 13),
("Lombardi", 11), ("Moretto", 9)]}

# separate names and weights
synthesize = {}
identifier = 1
for country in w_firstnames:

firstnames, weights = zip(*w_firstnames[country])
wsum = sum(weights)
weights_firstnames = [ x / wsum for x in weights]
w_firstnames[country] = [firstnames, weights_firstnames]

surnames, weights = zip(*w_surnames[country])
wsum = sum(weights)
weights_surnames = [ x / wsum for x in weights]
w_surnames[country] = [surnames, weights_firstnames]

synthesize[country] = synthesizer( (firstnames, surnames),
(weights_firstnames,
weights_surnames),

format_func=lambda x: " ".joi
n(x),

repeats=False)
nation_prob = [("Germany", 0.3),

("France", 0.4),
("Switzerland", 0.2),
("Italy", 0.1)]

profession_prob = [("Medical Aid", 0.3),
("Social Worker", 0.6),
("Security Aid", 0.1)]

helpers = []
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for _ in range(200):
country = weighted_cartesian_choice(zip(*nation_prob))
profession = weighted_cartesian_choice(zip(*profession_prob))
country, profession = country[0], profession[0]
s = synthesize[country]()
uid = "{id:05d}".format(id=identifier)
helpers.append((uid, country, next(s), profession ))
identifier += 1

print(helpers)
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[('00001', 'Germany', 'Brigitte Wagner', 'Social Worker'), ('0000
2', 'France', 'Chloé Muller', 'Medical Aid'), ('00003', 'Switzerla
nd', 'Laura Steiner', 'Medical Aid'), ('00004', 'France', 'Laura M
atin', 'Medical Aid'), ('00005', 'France', 'Léa Fontaine', 'Socia
l Worker'), ('00006', 'Switzerland', 'Océane Meyer', 'Social Worke
r'), ('00007', 'France', 'Léa Fournier', 'Social Worker'), ('0000
8', 'France', 'Marie Matin', 'Social Worker'), ('00009', 'Franc
e', 'Laura Durand', 'Security Aid'), ('00010', 'France', 'Maxime D
ubois', 'Social Worker'), ('00011', 'France', 'Nicolas Mercier',
'Social Worker'), ('00012', 'Italy', 'Mattia Gallo', 'Medical Ai
d'), ('00013', 'France', 'Quentin Leroy', 'Social Worker'), ('0001
4', 'Germany', 'Wolfgang Koch', 'Medical Aid'), ('00015', 'Franc
e', 'Manon Matin', 'Social Worker'), ('00016', 'Switzerland', 'Mél
issa Schneider', 'Social Worker'), ('00017', 'Germany', 'Thomas Ko
ch', 'Social Worker'), ('00018', 'Germany', 'Wolfgang Schäfer', 'M
edical Aid'), ('00019', 'Germany', 'Peter Schäfer', 'Security Ai
d'), ('00020', 'Italy', 'Alice Costa', 'Medical Aid'), ('00021',
'Switzerland', 'Océane Steiner', 'Social Worker'), ('00022', 'Fran
ce', 'Manon Durand', 'Medical Aid'), ('00023', 'Switzerland', 'Dan
iel Meier', 'Social Worker'), ('00024', 'France', 'Laura Fournie
r', 'Social Worker'), ('00025', 'Switzerland', 'Daniel Schneide
r', 'Security Aid'), ('00026', 'Germany', 'Maria Weber', 'Social W
orker'), ('00027', 'Switzerland', 'Sarah Weber', 'Medical Aid'),
('00028', 'Germany', 'Wolfgang Weber', 'Social Worker'), ('0002
9', 'Germany', 'Michael Fischer', 'Social Worker'), ('00030', 'Ger
many', 'Stefanie Hoffmann', 'Social Worker'), ('00031', 'France',
'Laura Mercier', 'Social Worker'), ('00032', 'France', 'Nicolas Le
roy', 'Social Worker'), ('00033', 'Germany', 'Peter Becker', 'Soci
al Worker'), ('00034', 'France', 'Maxime Petit', 'Social Worke
r'), ('00035', 'France', 'Maxime Matin', 'Security Aid'), ('0003
6', 'Germany', 'Stefanie Becker', 'Medical Aid'), ('00037', 'Franc
e', 'Laura Petit', 'Social Worker'), ('00038', 'Switzerland', 'Han
s Fischer', 'Social Worker'), ('00039', 'France', 'Nicolas Lero
y', 'Medical Aid'), ('00040', 'France', 'Léa Matin', 'Social Worke
r'), ('00041', 'Switzerland', 'Bruno Fischer', 'Social Worker'),
('00042', 'France', 'Julien Dubois', 'Medical Aid'), ('00043', 'Fr
ance', 'Alexandre Petit', 'Social Worker'), ('00044', 'France', 'C
amille Camille', 'Social Worker'), ('00045', 'France', 'Camille Ro
usseau', 'Medical Aid'), ('00046', 'France', 'Julien Lambert', 'So
cial Worker'), ('00047', 'France', 'Léa Dubois', 'Social Worke
r'), ('00048', 'Italy', 'Lorenzo Mancini', 'Security Aid'), ('0004
9', 'Germany', 'Ursula Hoffmann', 'Social Worker'), ('00050', 'Ger
many', 'Brigitte Meyer', 'Medical Aid'), ('00051', 'France', 'Sand
ra Lambert', 'Social Worker'), ('00052', 'Italy', 'Alice Rizzo',
'Medical Aid'), ('00053', 'France', 'Chloé Nicolas', 'Social Worke
r'), ('00054', 'Germany', 'Gabriele Schröder', 'Social Worker'),
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('00055', 'France', 'Thomas Durand', 'Medical Aid'), ('00056', 'Fr
ance', 'Léa Dubois', 'Medical Aid'), ('00057', 'France', 'Maxime M
ercier', 'Social Worker'), ('00058', 'Germany', 'Peter Schmidt',
'Social Worker'), ('00059', 'France', 'Quentin Durand', 'Social Wo
rker'), ('00060', 'France', 'Camille Petit', 'Social Worker'), ('0
0061', 'Switzerland', 'Laura Schmid', 'Medical Aid'), ('00062', 'I
taly', 'Gabriele Lombardi', 'Social Worker'), ('00063', 'Switzerla
nd', 'Peter Meier', 'Medical Aid'), ('00064', 'Switzerland', 'Ret
o Huber', 'Medical Aid'), ('00065', 'Italy', 'Matteo Mancini', 'Me
dical Aid'), ('00066', 'France', 'Marie Petit', 'Social Worker'),
('00067', 'Germany', 'Manfred Hoffmann', 'Medical Aid'), ('0006
8', 'Germany', 'Brigitte Schmidt', 'Medical Aid'), ('00069', 'Fran
ce', 'Manon Matin', 'Medical Aid'), ('00070', 'France', 'Nicolas P
etit', 'Social Worker'), ('00071', 'France', 'Léa Petit', 'Social
Worker'), ('00072', 'Germany', 'Monika Schulz', 'Social Worker'),
('00073', 'Italy', 'Mattia Rizzo', 'Social Worker'), ('00074', 'It
aly', 'Sofia Colombo', 'Social Worker'), ('00075', 'Germany', 'Mic
hael Schäfer', 'Medical Aid'), ('00076', 'Germany', 'Matthias Hoff
mann', 'Social Worker'), ('00077', 'Germany', 'Wolfgang Schneide
r', 'Social Worker'), ('00078', 'France', 'Julien Dubois', 'Socia
l Worker'), ('00079', 'Germany', 'Peter Fischer', 'Social Worke
r'), ('00080', 'France', 'Julien Leroy', 'Social Worker'), ('0008
1', 'France', 'Julien Bernard', 'Social Worker'), ('00082', 'Germa
ny', 'Michael Schmidt', 'Social Worker'), ('00083', 'France', 'Man
on Bernard', 'Social Worker'), ('00084', 'Switzerland', 'Hans Hube
r', 'Security Aid'), ('00085', 'Germany', 'Monika Schneider', 'Med
ical Aid'), ('00086', 'Switzerland', 'Noémie Müller', 'Security Ai
d'), ('00087', 'Switzerland', 'Sarah Gerber', 'Medical Aid'), ('00
088', 'Germany', 'Thomas Müller', 'Medical Aid'), ('00089', 'Switz
erland', 'Sarah Weber', 'Medical Aid'), ('00090', 'France', 'Laur
a Petit', 'Medical Aid'), ('00091', 'Switzerland', 'Sarah Gerbe
r', 'Medical Aid'), ('00092', 'Switzerland', 'Reto Schmid', 'Medic
al Aid'), ('00093', 'Germany', 'Monika Schneider', 'Medical Ai
d'), ('00094', 'France', 'Quentin Matin', 'Social Worker'), ('0009
5', 'Italy', 'Aurora Colombo', 'Social Worker'), ('00096', 'German
y', 'Ursula Meyer', 'Social Worker'), ('00097', 'Germany', 'Manfre
d Weber', 'Social Worker'), ('00098', 'Italy', 'Giulia Ferrari',
'Medical Aid'), ('00099', 'France', 'Thomas Muller', 'Social Worke
r'), ('00100', 'Switzerland', 'Daniel Schneider', 'Medical Aid'),
('00101', 'France', 'Maxime Camille', 'Medical Aid'), ('00102', 'F
rance', 'Laura Petit', 'Social Worker'), ('00103', 'Germany', 'Man
fred Schmidt', 'Medical Aid'), ('00104', 'Italy', 'Martina Lombard
i', 'Social Worker'), ('00105', 'Switzerland', 'Sarah Baumann', 'M
edical Aid'), ('00106', 'Switzerland', 'Bruno Gerber', 'Security A
id'), ('00107', 'Switzerland', 'Laura Müller', 'Social Worker'),
('00108', 'Germany', 'Andreas Weber', 'Social Worker'), ('00109',
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'Switzerland', 'Hans Fischer', 'Social Worker'), ('00110', 'Switze
rland', 'Daniel Meyer', 'Social Worker'), ('00111', 'France', 'Jul
ien Rousseau', 'Security Aid'), ('00112', 'Switzerland', 'Reto Sch
mid', 'Social Worker'), ('00113', 'Switzerland', 'Urli Schneide
r', 'Social Worker'), ('00114', 'France', 'Grégory Rousseau', 'Med
ical Aid'), ('00115', 'France', 'Marie Durand', 'Social Worker'),
('00116', 'France', 'Léa Durand', 'Social Worker'), ('00117', 'Fra
nce', 'Camille Matin', 'Medical Aid'), ('00118', 'Germany', 'Wolfg
ang Schneider', 'Social Worker'), ('00119', 'France', 'Julien Mati
n', 'Social Worker'), ('00120', 'France', 'Marie Leroy', 'Social W
orker'), ('00121', 'Switzerland', 'Mélissa Brunner', 'Security Ai
d'), ('00122', 'Germany', 'Ursula Schneider', 'Social Worker'),
('00123', 'France', 'Camille Mercier', 'Social Worker'), ('0012
4', 'France', 'Julien Camille', 'Social Worker'), ('00125', 'Switz
erland', 'Laura Schmid', 'Medical Aid'), ('00126', 'France', 'Cami
lle Durand', 'Social Worker'), ('00127', 'France', 'Marie Camill
e', 'Medical Aid'), ('00128', 'Germany', 'Monika Wagner', 'Social
Worker'), ('00129', 'Italy', 'Giorgia Esposito', 'Security Aid'),
('00130', 'France', 'Clementine Mercier', 'Social Worker'), ('0013
1', 'France', 'Marie Matin', 'Social Worker'), ('00132', 'Switzerl
and', 'Noémie Brunner', 'Medical Aid'), ('00133', 'France', 'Nicol
as Leroy', 'Security Aid'), ('00134', 'France', 'Camille Camill
e', 'Social Worker'), ('00135', 'Germany', 'Wolfgang Fischer', 'Me
dical Aid'), ('00136', 'Germany', 'Brigitte Müller', 'Medical Ai
d'), ('00137', 'Germany', 'Peter Schneider', 'Social Worker'), ('0
0138', 'Switzerland', 'Laura Schneider', 'Medical Aid'), ('0013
9', 'France', 'Chloé Rousseau', 'Social Worker'), ('00140', 'Ital
y', 'Alice De Luca', 'Medical Aid'), ('00141', 'France', 'Thomas B
ernard', 'Social Worker'), ('00142', 'Italy', 'Francesco Grecco',
'Medical Aid'), ('00143', 'Switzerland', 'Peter Frei', 'Medical Ai
d'), ('00144', 'France', 'Philippe Mercier', 'Security Aid'), ('00
145', 'Germany', 'Monika Meyer', 'Social Worker'), ('00146', 'Fran
ce', 'Alexandre Lambert', 'Medical Aid'), ('00147', 'Switzerlan
d', 'Sarah Brunner', 'Security Aid'), ('00148', 'Germany', 'Wolfga
ng Schneider', 'Social Worker'), ('00149', 'Germany', 'Manfred Mül
ler', 'Social Worker'), ('00150', 'France', 'Léa Dubois', 'Medica
l Aid'), ('00151', 'Switzerland', 'Reto Schmid', 'Medical Aid'),
('00152', 'France', 'Manon Lambert', 'Social Worker'), ('00153',
'France', 'Chloé Fournier', 'Social Worker'), ('00154', 'France',
'Grégory Bernard', 'Social Worker'), ('00155', 'Italy', 'Martina B
runo', 'Social Worker'), ('00156', 'France', 'Marie Nicolas', 'Soc
ial Worker'), ('00157', 'Italy', 'Giorgia Romano', 'Social Worke
r'), ('00158', 'France', 'Thomas Mercier', 'Security Aid'), ('0015
9', 'Germany', 'Manfred Richter', 'Social Worker'), ('00160', 'Ger
many', 'Wolfgang Schäfer', 'Social Worker'), ('00161', 'Germany',
'Peter Müller', 'Security Aid'), ('00162', 'Switzerland', 'Océane
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with open("disaster_mission.txt", "w") as fh:
fh.write("Reference number,Country,Name,Function\n")
for el in helpers:

fh.write(",".join(el) + "\n")

In [ ]:

Meyer', 'Social Worker'), ('00163', 'Germany', 'Monika Schneide
r', 'Social Worker'), ('00164', 'France', 'Chloé Dubois', 'Social
Worker'), ('00165', 'Germany', 'Peter Fischer', 'Social Worker'),
('00166', 'Germany', 'Christine Müller', 'Social Worker'), ('0016
7', 'Switzerland', 'Walter Steiner', 'Security Aid'), ('00168', 'G
ermany', 'Dirk Bauer', 'Medical Aid'), ('00169', 'Germany', 'Matth
ias Schmidt', 'Social Worker'), ('00170', 'Germany', 'Andreas Schn
eider', 'Medical Aid'), ('00171', 'Italy', 'Gabriele Grecco', 'Med
ical Aid'), ('00172', 'France', 'Léa Matin', 'Security Aid'), ('00
173', 'France', 'Nicolas Dubois', 'Social Worker'), ('00174', 'Swi
tzerland', 'Bruno Fischer', 'Social Worker'), ('00175', 'France',
'Camille Matin', 'Social Worker'), ('00176', 'Switzerland', 'Mélis
sa Zimmermann', 'Social Worker'), ('00177', 'Germany', 'Stefanie B
ecker', 'Medical Aid'), ('00178', 'France', 'Maxime Leroy', 'Socia
l Worker'), ('00179', 'Germany', 'Michael Fischer', 'Security Ai
d'), ('00180', 'Germany', 'Stefanie Schmidt', 'Medical Aid'), ('00
181', 'Germany', 'Peter Schneider', 'Social Worker'), ('00182', 'S
witzerland', 'Laura Huber', 'Social Worker'), ('00183', 'France',
'Marie Fournier', 'Medical Aid'), ('00184', 'Italy', 'Leonardo Mor
etto', 'Social Worker'), ('00185', 'Germany', 'Peter Meyer', 'Soci
al Worker'), ('00186', 'France', 'Alexandre Durand', 'Social Worke
r'), ('00187', 'Switzerland', 'Walter Müller', 'Social Worker'),
('00188', 'France', 'Chloé Leroy', 'Medical Aid'), ('00189', 'Swit
zerland', 'Walter Weber', 'Social Worker'), ('00190', 'Switzerlan
d', 'Sarah Steiner', 'Social Worker'), ('00191', 'Germany', 'Wolfg
ang Fischer', 'Social Worker'), ('00192', 'Germany', 'Matthias Bec
ker', 'Security Aid'), ('00193', 'Germany', 'Ursula Schäfer', 'Soc
ial Worker'), ('00194', 'Switzerland', 'Océane Keller', 'Security
Aid'), ('00195', 'Germany', 'Brigitte Richter', 'Medical Aid'),
('00196', 'Germany', 'Ursula Müller', 'Medical Aid'), ('00197', 'I
taly', 'Tommaso Rizzo', 'Social Worker'), ('00198', 'Switzerlan
d', 'Marcel Fischer', 'Social Worker'), ('00199', 'France', 'Léa P
etit', 'Medical Aid'), ('00200', 'France', 'Nicolas Camille', 'Sec
urity Aid')]
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N U M P Y :  B O O L E A N  I N D E X I N G

import numpy as np
A = np.array([4, 7, 3, 4, 2, 8])

print(A == 4)

Every element of the Array A is tested, if it is equal to 4.
The results of these tests are the Boolean elements of the
result array.

Of course, it is also possible to check on "<", "<=", ">" and
">=".

print(A < 5)

It works also for higher dimensions:

B = np.array([[42,56,89,65],
[99,88,42,12],
[55,42,17,18]])

print(B>=42)

It is a convenient way to threshold images.

import numpy as np
A = np.array([
[12, 13, 14, 12, 16, 14, 11, 10, 9],
[11, 14, 12, 15, 15, 16, 10, 12, 11],
[10, 12, 12, 15, 14, 16, 10, 12, 12],

[ True False False  True False Fals
e]

[ True False  True  True  True False]

[[ True  True  True  True]
[ True  True  True False]
[ True  True False False]]
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[ 9, 11, 16, 15, 14, 16, 15, 12, 10],
[12, 11, 16, 14, 10, 12, 16, 12, 13],
[10, 15, 16, 14, 14, 14, 16, 15, 12],
[13, 17, 14, 10, 14, 11, 14, 15, 10],
[10, 16, 12, 14, 11, 12, 14, 18, 11],
[10, 19, 12, 14, 11, 12, 14, 18, 10],
[14, 22, 17, 19, 16, 17, 18, 17, 13],
[10, 16, 12, 14, 11, 12, 14, 18, 11],
[10, 16, 12, 14, 11, 12, 14, 18, 11],
[10, 19, 12, 14, 11, 12, 14, 18, 10],
[14, 22, 12, 14, 11, 12, 14, 17, 13],
[10, 16, 12, 14, 11, 12, 14, 18, 11]])

B = A < 15
B.astype(np.int)

If you have a close look at the previous output, you will see, that it the upper case 'A' is hidden in the array B.

FANCY INDEXING

We will index an array C in the following example by using a Boolean mask. It is called fancy indexing, if
arrays are indexed by using boolean or integer arrays (masks). The result will be a copy and not a view.

In our next example, we will use the Boolean mask of one array to select the corresponding elements of
another array. The new array R contains all the elements of C where the corresponding value of (A<=5) is
True.

Output: array([[1, 1, 1, 1, 0, 1, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 0, 0, 1, 1],
[1, 1, 0, 1, 1, 1, 0, 1, 1],
[1, 0, 0, 1, 1, 1, 0, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 1]])

NUMPY: BOOLEAN INDEXING 137



C = np.array([123,188,190,99,77,88,100])
A = np.array([4,7,2,8,6,9,5])

R = C[A<=5]
print(R)

INDEXING WITH AN INTEGER ARRAY

In the following example, we will index with an integer array:

C[[0, 2, 3, 1, 4, 1]]

Indices can appear in every order and multiple times!

EXERCISES

Extract from the array np.array([3,4,6,10,24,89,45,43,46,99,100]) with Boolean masking all the number

• which are not divisible by 3

• which are divisible by 5

• which are divisible by 3 and 5

• which are divisible by 3 and set them to 42

SOLUTIONS

import numpy as np
A = np.array([3,4,6,10,24,89,45,43,46,99,100])

div3 = A[A%3!=0]
print("Elements of A not divisible by 3:")

[123 190 100]

Output: array([123, 190,  99, 188,  77, 188])
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print(div3)

div5 = A[A%5==0]
print("Elements of A divisible by 5:")
print(div5)

print("Elements of A, which are divisible by 3 and 5:")
print(A[(A%3==0) & (A%5==0)])
print("------------------")

#

A[A%3==0] = 42
print("""New values of A after setting the elements of A,
which are divisible by 3, to 42:""")
print(A)

NONZERO AND WHERE

There is an ndarray method called nonzero and a numpy method with this name. The two functions are
equivalent.

For an ndarray a both numpy.nonzero(a) and a.nonzero() return the indices of the elements of a that are non-
zero. The indices are returned as a tuple of arrays, one for each dimension of 'a'. The corresponding non-zero
values can be obtained with:

a[numpy.nonzero(a)]

import numpy as np
a = np.array([[0, 2, 3, 0, 1],

Elements of A not divisible by 3:
[  4  10  89  43  46 100]
Elements of A divisible by 5:
[ 10  45 100]
Elements of A, which are divisible by 3 and 5:
[45]
------------------
New values of A after setting the elements of A,
which are divisible by 3, to 42:
[ 42   4  42  10  42  89  42  43  46  42 100]
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[1, 0, 0, 7, 0],
[5, 0, 0, 1, 0]])

print(a.nonzero())

If you want to group the indices by element, you can use transpose:

transpose(nonzero(a))

A two-dimensional array is returned. Every row corresponds to a non-zero element.

np.transpose(a.nonzero())

The corresponding non-zero values can be retrieved with:

a[a.nonzero()]

The function 'nonzero' can be used to obtain the indices of an array, where a condition is True. In the following
script, we create the Boolean array B >= 42:

B = np.array([[42,56,89,65],
[99,88,42,12],
[55,42,17,18]])

print(B >= 42)

np.nonzero(B >= 42) yields the indices of the B where the condition is true:

(array([0, 0, 0, 1, 1, 2, 2]), array([1, 2, 4, 0, 3, 0, 3]))

Output: array([[0, 1],
[0, 2],
[0, 4],
[1, 0],
[1, 3],
[2, 0],
[2, 3]])

Output: array([2, 3, 1, 1, 7, 5, 1])

[[ True  True  True  True]
[ True  True  True False]
[ True  True False False]]
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EXERCISE

Calculate the prime numbers between 0 and 100 by using a Boolean array.

Solution:

import numpy as np
is_prime = np.ones((100,), dtype=bool)

# Cross out 0 and 1 which are not primes:
is_prime[:2] = 0

# cross out its higher multiples (sieve of Eratosthenes):
nmax = int(np.sqrt(len(is_prime)))
for i in range(2, nmax):

is_prime[2*i::i] = False
print(np.nonzero(is_prime))

FLATNONZERO AND COUNT_NONZERO

similar functions:

• flatnonzero :

Return indices that are non-zero in the flattened versio
n of the input

array.

(array([ 2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 4
7, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97]),)
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• count_nonzero :

Counts the number of non-zero elements in the input arra
y.
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M A T R I X  M U L T I P L I C A I O N ,  D O T  A N D
C R O S S  P R O D U C T

Distorted Abacus In the previous chapter of our introduction in NumPy we
have demonstrated how to create and change Arrays. In this chapter we
want to show, how we can perform in Python with the module NumPy all
the basic Matrix Arithmetics like

• Matrix addition
• Matrix subtraction
• Matrix multiplication
• Scalar product
• Cross product
• and lots of other operations on matrices

The arithemtic standard Operators

• +
• -
• *
• /

• %

are applied on the elements, this means that the arrays have to have the same size.

import numpy as np
x = np.array([1, 5, 2])
y = np.array([7, 4, 1])
x + y

x * y

In [ ]:

x - y
x / y

Output: array([8, 9, 3])

Output: array([ 7, 20,  2])

Output: array([0.14285714, 1.25      , 2.        ])

MATRIX MULTIPLICAION, DOT AND CROSS PRODUCT 143



x % y

VECTOR ADDITION AND SUBTRACTION

Many people know vector addition
and subtraction from physics, to be
exact from the parallelogram of
forces. It is a method for solving
(or visualizing) the results of
applying two forces to an object.

The addition of two vectors, in our
example (see picture) x and y, may
be represented graphically by
placing the start of the arrow y at
the tip of the arrow x, and then
drawing an arrow from the start (tail) of x to the tip (head) of y. The new arrow drawn represents the vector x
+ y

x = np.array([3, 2])
y = np.array([5, 1])
z = x + y
z

Subtracting a vector is the same as adding
its negative. So, the difference of the
vectors x and y is equal to the sum of x and
-y: x - y = x + (-y) Subtraction of two
vectors can be geometrically defined as
follows: to subtract y from x, we place the
end points of x and y at the same point,
and then draw an arrow from the tip of y to
the tip of x. That arrow represents the
vector x - y, see picture on the right side.

Mathematically, we subtract the corresponding components of vector y from the vector x.

SCALAR PRODUCT / DOT PRODUCT

In mathematics, the dot product is an algebraic operation that takes two coordinate vectors of equal size and
returns a single number. The result is calculated by multiplying corresponding entries and adding up those

Output: array([1, 1, 0])

Output: array([8, 3])
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products. The name "dot product" stems from the fact that the centered dot "·" is often used to designate this
operation. The name "scalar product" focusses on the scalar nature of the result. of the result.

Definition of the scalar product:

We can see from the definition of the scalar product that it can be used to calculate the cosine of the angle
between two vectors.

Calculation of the scalar product:

Finally, we want to demonstrate how to calculate the scalar product in Python:

x = np.array([1, 2, 3])
y = np.array([-7, 8, 9])
np.dot(x, y)

dot = np.dot(x ,y)
x_modulus = np.sqrt((x*x).sum())
y_modulus = np.sqrt((y*y).sum())
cos_angle = dot / x_modulus / y_modulus # cosine of angle between
x and y
angle = np.arccos(cos_angle)
angle

angle * 360 / 2 / np.pi # angle in degrees

In [ ]:

36
>>> dot = np.dot(x,y)
>>> x_modulus = np.sqrt((x*x).sum())
>>> y_modulus = np.sqrt((y*y).sum())
>>> cos_angle = dot / x_modulus / y_modulus # cosine of angle betw

Output: 36

Output: 0.808233789010825

Output: 46.308384970187326
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een x and y
>>> angle = np.arccos(cos_angle)
>>> angle
0.80823378901082499
>>> angle * 360 / 2 / np.pi # angle in degrees

MATRIX PRODUCT

The matrix product of two matrices can be calculated if the number of columns of the left matrix is equal to
the number of rows of the second or right matrix.
The product of a (l x m)-matrix A = (aij)i=1...l, j= 1..m and an (m x n)-matrix B = (bij)i=1...m, j= 1..n is a matrix C
= (cij)i=1...l, j= 1..n, which is calculated like this:

The following picture illustrates it further:

If we want to perform matrix multiplication with two numpy arrays (ndarray), we have to use the dot product:

x = np.array( ((2,3), (3, 5)) )
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y = np.matrix( ((1,2), (5, -1)) )
print(np.dot(x,y))

SIMPLE PRACTICAL APPLICATION FOR MATRIX MULTIPLICATION

In the following practical example, we come to talk about the sweet
things of life.
Let's assume there are four people, and we call them Lucas, Mia,
Leon and Hannah. Each of them has bought chocolates out of a
choice of three. The brand are A, B and C, not very marketable, we
have to admit. Lucas bought 100 g of brand A, 175 g of brand B and
210 of C. Mia choose 90 g of A, 160 g of B and 150 g of C. Leon
bought 200 g of A, 50 of B and 100 g of C. Hannah apparently didn't
like brand B, because she hadn't bought any of those. But she she
seems to be a real fan of brand C, because she bought 310 g of them.
Furthermore she bought 120 g of A.

So, what's the price in Euro of these chocolates: A costs 2.98 per 100
g, B costs 3.90 and C only 1.99 Euro.

If we have to calculate how much each of them had to pay, we can use Python, NumPy and Matrix
multiplication:

import numpy as np
NumPersons = np.array([[100, 175, 210],

[90, 160, 150],
[200, 50, 100],
[120, 0, 310]])

Price_per_100_g = np.array([2.98, 3.90, 1.99])
Price_in_Cent = np.dot(NumPersons,Price_per_100_g)
Price_in_Euro = Price_in_Cent / 100
Price_in_Euro

[[17  1]
[28  1]]

Output: array([13.984, 11.907,  9.9  ,  9.745])
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CROSS PRODUCT

Let's stop consuming delicious chocolates and come back
to a more mathematical and less high-calorie topic, i.e. the
cross product.

The cross product or vector product is a binary operation
on two vectors in three-dimensional space. The result is a
vector which is perpendicular to the vectors being
multiplied and normal to the plane containing them.

The cross product of two vectors a and b is denoted by a ×
b.

It's defined as:

where n is a unit vector perpendicular to the plane
containing a and b in the direction given by the right-hand
rule.

If either of the vectors being multiplied is zero or the
vectors are parallel then their cross product is zero. More
generally, the magnitude of the product equals the area of
a parallelogram with the vectors as sides. If the vectors are
perpendicular the parallelogram is a rectangle and the
magnitude of the product is the product of their lengths.

x = np.array([0, 0, 1])
y = np.array([0, 1, 0])

np.cross(x, y)

np.cross(y, x)

Output: array([-1,  0,  0])

Output: array([1, 0, 0])
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R E A D I N G  A N D  W R I T I N G  D A T A
F I L E S

There are lots of ways for reading from file and writing to data
files in numpy. We will discuss the different ways and
corresponding functions in this chapter:

• savetxt
• loadtxt
• tofile
• fromfile
• save
• load
• genfromtxt

SAVING TEXTFILES WITH SAVETXT

The first two functions we will cover are savetxt and loadtxt.

In the following simple example, we define an array x and save it as a textfile with savetxt:

import numpy as np
x = np.array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]], np.int32)

np.savetxt("test.txt", x)

The file "test.txt" is a textfile and its content looks like this:

bernd@andromeda:~/Dropbox/notebooks/numpy$ more test.txt
1.000000000000000000e+00 2.000000000000000000e+00 3.000000000000000
000e+00
4.000000000000000000e+00 5.000000000000000000e+00 6.000000000000000
000e+00
7.000000000000000000e+00 8.000000000000000000e+00 9.000000000000000
000e+00

Attention: The above output has been created on the Linux command prompt!
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It's also possible to print the array in a special format, like for example with three decimal places or as
integers, which are preceded with leading blanks, if the number of digits is less than 4 digits. For this purpose
we assign a format string to the third parameter 'fmt'. We saw in our first example that the default delimeter is
a blank. We can change this behaviour by assigning a string to the parameter "delimiter". In most cases this
string will consist solely of a single character but it can be a sequence of character, like a smiley " :-) " as well:

np.savetxt("test2.txt", x, fmt="%2.3f", delimiter=",")
np.savetxt("test3.txt", x, fmt="%04d", delimiter=" :-) ")

The newly created files look like this:

bernd@andromeda:~/Dropbox/notebooks/numpy$ more test2.txt
1.000,2.000,3.000
4.000,5.000,6.000
7.000,8.000,9.000
bernd@andromeda:~/Dropbox/notebooks/numpy$ more test3.txt
0001 :-) 0002 :-) 0003
0004 :-) 0005 :-) 0006
0007 :-) 0008 :-) 0009

The complete syntax of savetxt looks like this:

savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', heade
r='', footer='', comments='# ')

Parameter Meaning

X array_like Data to be saved to a text file.

fmt

str or sequence of strs, optional
A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which

case 'delimiter' is ignored. For complex 'X', the legal options for 'fmt' are:
a) a single specifier, "fmt='%.4e'", resulting in numbers formatted like "' (%s+%sj)' % (fmt, fmt)"

b) a full string specifying every real and imaginary part, e.g. "' %.4e %+.4j %.4e %+.4j %.4e %+.4j'" for 3 columns
c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g.

"['%.3e + %.3ej', '(%.15e%+.15ej)']" for 2 columns

delimiter A string used for separating the columns.

newline A string (e.g. "\n", "\r\n" or ",\n") which will end a line instead of the default line ending

header A String that will be written at the beginning of the file.

footer A String that will be written at the end of the file.
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Parameter Meaning

comments
A String that will be prepended to the 'header' and 'footer' strings, to mark them as comments. The hash tag '#' is

used as the default.

LOADING TEXTFILES WITH LOADTXT

We will read in now the file "test.txt", which we have written in our previous subchapter:

y = np.loadtxt("test.txt")
print(y)

y = np.loadtxt("test2.txt", delimiter=",")
print(y)

Nothing new, if we read in our text, in which we used a smiley to separator:

y = np.loadtxt("test3.txt", delimiter=" :-) ")
print(y)

It's also possible to choose the columns by index:

y = np.loadtxt("test3.txt", delimiter=" :-) ", usecols=(0,2))
print(y)

[[ 1.  2.  3.]
[ 4.  5.  6.]
[ 7.  8.  9.]]

[[ 1.  2.  3.]
[ 4.  5.  6.]
[ 7.  8.  9.]]

[[ 1.  2.  3.]
[ 4.  5.  6.]
[ 7.  8.  9.]]

[[ 1.  3.]
[ 4.  6.]
[ 7.  9.]]
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We will read in our next example the file "times_and_temperatures.txt", which we have created in our chapter
on Generators of our Python tutorial. Every line contains a time in the format "hh::mm::ss" and random
temperatures between 10.0 and 25.0 degrees. We have to convert the time string into float numbers. The time
will be in minutes with seconds in the hundred. We define first a function which converts "hh::mm::ss" into
minutes:

def time2float_minutes(time):
if type(time) == bytes:

time = time.decode()
t = time.split(":")
minutes = float(t[0])*60 + float(t[1]) + float(t[2]) * 0.05 /

3
return minutes

for t in ["06:00:10", "06:27:45", "12:59:59"]:
print(time2float_minutes(t))

You might have noticed that we check the type of time for binary. The reason for this is the use of our function
"time2float_minutes in loadtxt in the following example. The keyword parameter converters contains a
dictionary which can hold a function for a column (the key of the column corresponds to the key of the
dictionary) to convert the string data of this column into a float. The string data is a byte string. That is why
we had to transfer it into a a unicode string in our function:

y = np.loadtxt("times_and_temperatures.txt",
converters={ 0: time2float_minutes})

print(y)

# delimiter = ";" , # i.e. use ";" as delimiter instead of whitesp
ace

TOFILE

360.1666666666667
387.75
779.9833333333333

[[  360.     20.1]
[  361.5    16.1]
[  363.     16.9]
...,
[ 1375.5    22.5]
[ 1377.     11.1]
[ 1378.5    15.2]]
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tofile is a function to write the content of an array to a file both in binary, which is the default, and text format.

A.tofile(fid, sep="", format="%s")

The data of the A ndarry is always written in 'C' order, regardless of the order of A.

The data file written by this method can be reloaded with the function fromfile() .

Parameter Meaning

fid can be either an open file object, or a string containing a filename.

sep
The string 'sep' defines the separator between array items for text output. If it is empty (''), a binary file is written,

equivalent to file.write(a.tostring()).

format
Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest

Python type, and then using 'format' % item.

Remark:

Information on endianness and precision is lost. Therefore it may not be a good idea to use the function to
archive data or transport data between machines with different endianness. Some of these problems can be
overcome by outputting the data as text files, at the expense of speed and file size.

dt = np.dtype([('time', [('min', int), ('sec', int)]),
('temp', float)])

x = np.zeros((1,), dtype=dt)
x['time']['min'] = 10
x['temp'] = 98.25
print(x)

fh = open("test6.txt", "bw")
x.tofile(fh)

FROMFILE

fromfile to read in data, which has been written with the tofile function. It's possible to read binary
data, if the data type is known. It's also possible to parse simply formatted text files. The data from the file is
turned into an array.

[((10, 0), 98.25)]
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The general syntax looks like this:

numpy.fromfile(file, dtype=float, count=-1, sep='')

Parameter Meaning

file 'file' can be either a file object or the name of the file to read.

dtype
defines the data type of the array, which will be constructed from the file data. For binary files, it is used to

determine the size and byte-order of the items in the file.

count defines the number of items, which will be read. -1 means all items will be read.

sep
The string 'sep' defines the separator between the items, if the file is a text file. If it is empty (''), the file will be

treated as a binary file. A space (" ") in a separator matches zero or more whitespace characters. A separator
consisting solely of spaces has to match at least one whitespace.

fh = open("test4.txt", "rb")

np.fromfile(fh, dtype=dt)

import numpy as np
import os
# platform dependent: difference between Linux and Windows
#data = np.arange(50, dtype=np.int)

data = np.arange(50, dtype=np.int32)
data.tofile("test4.txt")

fh = open("test4.txt", "rb")
# 4 * 32 = 128
fh.seek(128, os.SEEK_SET)

Output: array([((4294967296, 12884901890), 1.0609978957e-313),
((30064771078, 38654705672), 2.33419537056e-313),
((55834574860, 64424509454), 3.60739284543e-313),
((81604378642, 90194313236), 4.8805903203e-313),
((107374182424, 115964117018), 6.1537877952e-313),
((133143986206, 141733920800), 7.42698527006e-313),
((158913789988, 167503724582), 8.70018274493e-313),
((184683593770, 193273528364), 9.9733802198e-313)],

dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('te
mp', '<f8')])
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x = np.fromfile(fh, dtype=np.int32)
print(x)

Attention:

It can cause problems to use tofile and fromfile for data storage, because the binary files generated
are not platform independent. There is no byte-order or data-type information saved by tofile . Data can
be stored in the platform independent .npy format using save and load instead.

BEST PRACTICE TO LOAD AND SAVE DATA

The recommended way to store and load data with Numpy in Python consists in using load and save. We also
use a temporary file in the following :

import numpy as np
print(x)

from tempfile import TemporaryFile

outfile = TemporaryFile()

x = np.arange(10)
np.save(outfile, x)

outfile.seek(0) # Only needed here to simulate closing & reopenin
g file
np.load(outfile)

AND YET ANOTHER WAY: GENFROMTXT

[32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49]

[32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49]
Output: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
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There is yet another way to read tabular input from file to create arrays. As the name implies, the input file is
supposed to be a text file. The text file can be in the form of an archive file as well. genfromtxt can process the
archive formats gzip and bzip2. The type of the archive is determined by the extension of the file, i.e. '.gz' for
gzip and bz2' for an bzip2.

genfromtxt is slower than loadtxt, but it is capable of coping with missing data. It processes the file data in two
passes. At first it converts the lines of the file into strings. Thereupon it converts the strings into the requested
data type. loadtxt on the other hand works in one go, which is the reason, why it is faster.

RECFROMCSV(FNAME, **KWARGS)

This is not really another way to read in csv data. 'recfromcsv' basically a shortcut for

np.genfromtxt(filename, delimiter=",", dtype=None)
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O V E R V I E W  O F  M A T P L O T L I B

INTRODUCTION

Matplotlib is a plotting library like GNUplot. The main
advantage towards GNUplot is the fact that Matplotlib is a
Python module. Due to the growing interest in python the
popularity of matplotlib is continually rising as well.

Another reason for the attractiveness of Matplotlib lies in the
fact that it is widely considered to be a perfect alternative to
MATLAB, if it is used in combination with Numpy and Scipy.
Whereas MATLAB is expensive and closed source, Matplotlib
is free and open source code. It is also object-oriented and can
be used in an object oriented way. Furthermore it can be used
with general-purpose GUI toolkits like wxPython, Qt, and
GTK+. There is also a procedural "pylab", which designed to
closely resemble that of MATLAB. This can make it extremely
easy for MATLAB users to migrate to matplotlib.

Matplotlib can be used to create publication quality figures in a
variety of hardcopy formats and interactive environments across
platforms.

Another characteristic of matplotlib is its steep learning curve, which means that users usually make rapid
progress after having started. The officicial website has to say the following about this: "matplotlib tries to
make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts,
errorcharts, scatterplots, etc, with just a few lines of code."

A FIRST EXAMPLE: LINE PLOT

We will start with a simple graph , which is as simple as simple can be. A graph in matplotlib is a two- or
three-dimensional drawing showing a relationship by means of points, a curve, or amongst others a series of
bars. We have two axis: The horizontal X-axis is representing the independent values and the vertical Y-axis
corresponds to the depended values.

We will use the pyplot submodule of matplotlib. pyplot provides a procedural interface to the object-oriented
plotting library of matplotlib.
Its plotting commands are chosen in a way that they are similar to Matlab both in naming and with the
arguments.
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Is is common practice to rename matplotlib.pyplot to plt. We will use the plot function of pyplot in our first
example. We will pass a list of values to the plot function. Plot takes these as Y values. The indices of the list
are automatically taken as the X values. The command %matplotlib inline makes only sense, if you
work with Ipython Notebook. It makes sure, that the graphs will be depicted inside of the document and not as
independent windows:

import matplotlib.pyplot as plt
plt.plot([-1, -4.5, 16, 23])
plt.show()

What we see is a continuous graph, even though we provided discrete data for the Y values. By adding a
format string to the function call of plot, we can create a graph with discrete values, in our case blue circle
markers. The format string defines the way how the discrete points have to be rendered.

import matplotlib.pyplot as plt
plt.plot([-1, -4.5, 16, 23], "ob")
plt.show()
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With only a little bit of input we were capable in the previous examples to create plots. Yet, the plots missed
some information. Usually, we would like to give a name to the 'x' and 'y' values. Furthermore, the whole
graph should have a title. We demonstate this in the following example:

import matplotlib.pyplot as plt
days = range(1, 9)
celsius_values = [25.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]

fig, ax = plt.subplots()
ax.plot(days, celsius_values)
ax.set(xlabel='Day',

ylabel='Temperature in Celsius',
title='Temperature Graph')

plt.show()
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MULTIPLE PLOTS IN ONE GRAPH

We saw that the plot function is needed to plot a figure or better the figures, because there may be more
than one.

We can specify an arbitrary number of x, y, fmt groups in a one plot function. We will extend our previous
temperature example to demonstrate this. We provide two lists with temperature values, one for the minimum
and one for the maximum values:

import matplotlib.pyplot as plt
days = list(range(1,9))
celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]
celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2]

fig, ax = plt.subplots()

ax.set(xlabel='Day',
ylabel='Temperature in Celsius',
title='Temperature Graph')

ax.plot(days, celsius_min,
days, celsius_min, "oy",
days, celsius_max,
days, celsius_max, "or")

plt.show()
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We could have used four plot calls in the previous code instead of one, even though this is not very attractive:

import matplotlib.pyplot as plt
days = list(range(1, 9))
celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]
celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2]

fig, ax = plt.subplots()

ax.set(xlabel='Day',
ylabel='Temperature in Celsius',
title='Temperature Graph')

ax.plot(days, celsius_min)
ax.plot(days, celsius_min, "oy")
ax.plot(days, celsius_max)
ax.plot(days, celsius_max, "or")

plt.show()
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EXAMPLE: BAR PLOTS

A more formal introduction will follow later in our tutorial on Matplotlib.

import matplotlib.pyplot as plt
import numpy as np
years = [str(year) for year in range(2010, 2021)]
visitors = (1241, 50927, 162242, 222093,

665004, 2071987, 2460407, 3799215,
5399000, 5474016, 6003672)

plt.bar(years, visitors, color="green")

plt.xlabel("Years")
plt.ylabel("Values")
plt.title("Bar Chart Example")

plt.plot()
plt.show()
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HISTOGRAMS
import matplotlib.pyplot as plt
import numpy as np
gaussian_numbers = np.random.normal(size=10000)
gaussian_numbers

plt.hist(gaussian_numbers, bins=20)
plt.title("Gaussian Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()
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SCATTER PLOTS
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 11)

y1 = np.random.randint(2, 7, (11,))
y2 = np.random.randint(9, 14, (11,))
y3 = np.random.randint(15, 25, (11,))

# Markers: https://matplotlib.org/api/markers_api.html

plt.scatter(x, y1)
plt.scatter(x, y2, marker='v', color='r')
plt.scatter(x, y3, marker='^', color='m')
plt.title('Scatter Plot Example')
plt.show()
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STACK PLOTS
import matplotlib.pyplot as plt
idxes = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]
y1 = [23, 42, 33, 43, 8, 44, 43, 18, 21]
y2 = [9, 31, 25, 14, 17, 17, 42, 22, 28]
y3 = [18, 29, 19, 22, 18, 16, 13, 32, 21]

plt.stackplot(idxes,
y1, y2, y3)

plt.title('Stack Plot Example')

plt.show()
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PIE CHARTS
import matplotlib.pyplot as plt
# Pie chart, where the slices will be ordered and plotted counter-
clockwise:
labels = 'C', 'Python', 'Java', 'C++', 'C#'
sizes = [13.38, 11.87, 11.74, 7.81, 4.41]
explode = (0, 0.1, 0, 0, 0) # only "explode" the 2nd slice (i.e.
'Hogs')

fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',

shadow=True, startangle=0)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn
as a circle.

plt.title('TIOBE Index for May 2021')
plt.show()

# Pie chart, where the slices will be ordered and plotted counter-
clockwise:
labels = 'C', 'Python', 'Java', 'C++', 'C#', 'others'
sizes = [13.38, 11.87, 11.74, 7.81, 4.41]
sizes.append(100 - sum(sizes))
explode = (0, 0.1, 0, 0, 0, 0) # only "explode" the 2nd slice
(i.e. 'Hogs')

fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',

shadow=True, startangle=0)
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ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn
as a circle.

plt.title('TIOBE Index for May 2021')
plt.show()
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F O R M A T  P L O T S

FORMAT PARAMETER
import matplotlib.pyplot as plt
plt.plot([-1, -4.5, 16, 23])
plt.show()

What we see is a continuous graph, even though we provided discrete data for the Y values. By adding a
format string to the function call of plot, we can create a graph with discrete values, in our case blue circle
markers. The format string defines the way how the discrete points have to be rendered.

import matplotlib.pyplot as plt
plt.plot([-1, -4.5, 16, 23], "ob")
plt.show()
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THE FORMAT PARAMETER OF PYPLOT.PLOT

We have used "ob" in our previous example as the format parameter. It consists of two characters. The first
one defines the line style or the dicrete value style, i.e. the markers, while the second one chooses a colour for
the graph. The order of the two characters could have been reversed, i.e. we could have written it as "bo" as
well. If the format parameter is not given, as in the first example, the default value is "b-", i.e. a solid blue line.

The following format string characters are accepted to control the line style or marker:

=============================================
character       description
=============================================
'-'             solid line style
'--'            dashed line style
'-.'            dash-dot line style
':'             dotted line style
'.'             point marker
','             pixel marker
'o'             circle marker
'v'             triangle_down marker
'^'             triangle_up marker
'<'             triangle_left marker
'>'             triangle_right marker
'1'             tri_down marker
'2'             tri_up marker
'3'             tri_left marker
'4'             tri_right marker
's'             square marker
'p'             pentagon marker
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'*'             star marker
'h'             hexagon1 marker
'H'             hexagon2 marker
'+'             plus marker
'x'             x marker
'D'             diamond marker
'd'             thin_diamond marker
'|'             vline marker
'_'             hline marker
===============================================

The following color abbreviations are supported:

==================
character   color
==================
'b'         blue
'g'         green
'r'         red
'c'         cyan
'm'         magenta
'y'         yellow
'k'         black
'w'         white
==================

As you may have guessed already, you can add X values to the plot function. We will use the multiples of 3
starting at 3 below 22 as the X values of the plot in the following example:

import matplotlib.pyplot as plt
# our X values:
days = list(range(0, 22, 3))
print("Values of days:", days)
# our Y values:
celsius_values = [25.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]

plt.plot(days, celsius_values)
plt.show()
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... and once more with discrete values:

plt.plot(days, celsius_values, 'bo')
plt.show()

Values of days: [0, 3, 6, 9, 12, 15, 18, 21]
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M A T P L O T L I B  T U T O R I A L

MATPLOTLIB OBJECT HIERARCHY AND IMPORTANT TERMS

Matplotlib is hierarchically organized. In the previous chapter,
we didn't made use of this structure. All we used was a simple
plot like plt.plot([2, 5, 9]) which is implicitly
building the necessary structures. We didn't have to know about
the underlying hierarchical structure. in this chapter of our
tutorial we will explain the underlying object hierarchy. We will
also demonstrate how to use it to plot graphs and work with the
created axes.

A matplotlib object is a tree-like structure of matplotlib objects
which build a "hierarchy". The top of the tree-like structure of
matplotlib objects is the figure object. A figure can be seen
as the container which contains one or more plots. The plots are
called axes in matplotlib jargon. Axes is the plural of the
word "axis", which gives us a misleading idea. We can think
about "axes" as a synonym for the word "plot". The following
diagram shows a figure with one axes:

As we have already mentioned a figure may also contain more than one axes:
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The terms axes and figure and in particular the relationship between them can be quite confusing to
beginners in Matplotlib. Similarly difficult to access and understand are many of the terms Spine , Tick
and Axis . Their function and meaning are easy to crasp, if you see look at them in the following diagram:

GENERATE FIGURE AND AXES
import matplotlib.pyplot as plt
fig, ax = plt.subplots()

print(type(fig))
print(type(ax))
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The function subplots can be used to create a figure and a set of subplots. In our previous example, we
called the function without parameters which creates a figure with a single included axes. we will see later
how to create more than one axes with subplots .

We will demonstrate in the following example, how we can go on with these objects to create a plot. We can
see that we apply plot directly on the axis object ax . This leaves no possible ambiguity as in the
plt.plot approach:

import matplotlib.pyplot as plt
# Data for plotting
X = [2, 4, 6, 8, 10]
Y = [1, 4, 9, 19, 39]

fig, ax = plt.subplots()
ax.plot(X, Y)

<class 'matplotlib.figure.Figure'>
<class 'matplotlib.axes._subplots.AxesSubplot'>

MATPLOTLIB TUTORIAL 174



LABELS ON AXES

We can improve the appearance of our graph by adding labels to the axes. We also want to give our plot a
headline or let us call it a title to stay in the terminology of Matplotlib. We can accomplish this by using
the set method of the axis object ax :

import matplotlib.pyplot as plt
days = list(range(1,9))
celsius_values = [25.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]

fig, ax = plt.subplots()
ax.plot(days, celsius_values)
ax.set(xlabel='Day',

ylabel='Temperature in Celsius',
title='Temperature Graph')

plt.show()

Output: [<matplotlib.lines.Line2D at 0x7f5dbe7b6dd8>]
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THE PLOT FUNCTION

The plot function is needed to plot a figure or better the figures, because there may be more than one.
When plot is run in ipython with its pylab mode, it displays all figures and returns to the ipython prompt.
When we run it in non-interactive mode, - which is the case, when we run a Python program - it displays all
figures and blocks until the figures have been closed.

We can specify an arbitrary number of x, y, fmt groups in a plot function. We will extend our previous
temperature example to demonstrate this. We provide two lists with temperature values, one for the minimum
and one for the maximum values:

import matplotlib.pyplot as plt
days = list(range(1,9))
celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]
celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2]

fig, ax = plt.subplots()

ax.set(xlabel='Day',
ylabel='Temperature in Celsius',
title='Temperature Graph')

ax.plot(days, celsius_min,
days, celsius_min, "oy",
days, celsius_max,
days, celsius_max, "or")
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plt.show()

We could have used for plot calls in the previous code instead of one, even though this is not very attractive:

import matplotlib.pyplot as plt
days = list(range(1, 9))
celsius_min = [19.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]
celsius_max = [24.8, 28.9, 31.3, 33.0, 34.9, 35.6, 38.4, 39.2]

fig, ax = plt.subplots()

ax.set(xlabel='Day',
ylabel='Temperature in Celsius',
title='Temperature Graph')

ax.plot(days, celsius_min)
ax.plot(days, celsius_min, "oy")
ax.plot(days, celsius_max)
ax.plot(days, celsius_max, "or")

plt.show()
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CHECKING AND DEFINING THE RANGE OF AXES

We can also check and define the range of the axes with the function axis. If you call it without arguments it
returns the current axis limits:

import matplotlib.pyplot as plt
days = list(range(1, 9))
celsius_values = [25.6, 24.1, 26.7, 28.3, 27.5, 30.5, 32.8, 33.1]

fig, ax = plt.subplots()
ax.plot(days, celsius_values)
ax.set(xlabel='Day',

ylabel='Temperature in Celsius',
title='Temperature Graph')

print("The current limits for the axes are:")
print(ax.axis())
print("We set the axes to the following values:")
xmin, xmax, ymin, ymax = 0, 10, 14, 45
print(xmin, xmax, ymin, ymax)
ax.axis([xmin, xmax, ymin, ymax])
plt.show()
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"LINSPACE" TO DEFINE X VALUES

We will use the Numpy function linspace in the following example. linspace can be used to create evenly
spaced numbers over a specified interval.

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 50, endpoint=True)
F1 = 3 * np.sin(X)
F2 = np.sin(2*X)
F3 = 0.3 * np.sin(X)

fig, ax = plt.subplots()

startx, endx = -2 * np.pi - 0.1, 2*np.pi + 0.1
starty, endy = -3.1, 3.1
ax.axis([startx, endx, starty, endy])

ax.plot(X, F1, X, F2, X, F3)
# discrete points:
ax.plot(X, F1, 'ro', X, F2, 'bx')
plt.show()

The current limits for the axes are:
(0.6499999999999999, 8.35, 23.650000000000002, 33.550000000000004)
We set the axes to the following values:
0 10 14 45
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CHANGING THE LINE STYLE

The linestyle of a plot can be influenced with the linestyle or ls parameter of the plot function. It can be set to
one of the following values:
'-', '--', '-.', ':', 'None', ' ', ''

We can use linewidth to set the width of a line as the name implies.

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(0, 2 * np.pi, 50, endpoint=True)
F1 = 3 * np.sin(X)
F2 = np.sin(2*X)
F3 = 0.3 * np.sin(X)
F4 = np.cos(X)

fig, ax = plt.subplots()
ax.plot(X, F1, color="blue", linewidth=2.5, linestyle="-")
ax.plot(X, F2, color="red", linewidth=1.5, linestyle="--")
ax.plot(X, F3, color="green", linewidth=2, linestyle=":")
ax.plot(X, F4, color="grey", linewidth=2, linestyle="-.")
plt.show()
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SCATTER PLOTS IN MATPLOTLIB

We will learn now how to draw single points in Matplotlib.

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.scatter(3, 7, s=42)

import matplotlib.pyplot as plt
import numpy as np
X = np.random.randint(0, 100, (20,))
Y = np.random.randint(0, 100, (20,))

Output: <matplotlib.collections.PathCollection at 0x7fd1ee805e20>
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fig, ax = plt.subplots()
ax.scatter(X, Y, s=42)

Output: <matplotlib.collections.PathCollection at 0x7fd1edfa16d0>
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S H A D I N G  R E G I O N S  W I T H
F I L L _ B E T W E E N ( )

It is possible to shade or colorize regions between two curves. We are filling the region between the X axis and
the graph of sin(2*X) in the following example:

import numpy as np
import matplotlib.pyplot as plt
n = 256
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X)

fig, ax = plt.subplots()
ax.plot (X, Y, color='blue', alpha=1.0)
ax.fill_between(X, 0, Y, color='blue', alpha=.2)
plt.show()

The general syntax of fill_between:

fill_between(x, y1, y2=0, where=None, interpolate=False, **kwargs)

The parameters of fill_between:
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Parameter Meaning

x An N-length array of the x data

y1 An N-length array (or scalar) of the y data

y2 An N-length array (or scalar) of the y data

where
If None, default to fill between everywhere. If not None, it is an N-length numpy boolean array and the fill will only

happen over the regions where where==True.

interpolate
If True, interpolate between the two lines to find the precise point of intersection. Otherwise, the start and end points

of the filled region will only occur on explicit values in the x array.

kwargs Keyword args passed on to the PolyCollection

import numpy as np
import matplotlib.pyplot as plt
n = 256
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X)

fig, ax = plt.subplots()

ax.plot (X, Y, color='blue', alpha=1.00)
ax.fill_between(X, Y, 1, color='blue', alpha=.1)
plt.show()
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M A T P L O T L I B  T U T O R I A L :  S P I N E S
A N D  T I C K S

MOVING THE BORDER LINES AND POLISHING UP THE AXES NOTATIONS

The word spine is most commonly known as the backbone or spinal
cord of the human skeleton. Another meaning stands for a book's
jacket. Our picture on the right side shows the spines of a cactus,
artistically changed into something which looks like a ribcage. You will
hardly find the usage of the word spine of matplotlib in a
dictionary. Spines in matplotlib are the lines connecting the axis tick
marks and noting the boundaries of the data area.

We will demonstrate in the following that the spines can be placed at
arbitrary positions.

We will move around the spines in the course of this chapter so that the
form a 'classical' coordinate syste. One where we have a x axis and a y
axis and both go through the origin i.e. the point (0, 0)

We will show the naming of the spines in the following diagram:

MATPLOTLIB TUTORIAL: SPINES AND TICKS 186



We will move the spines to build a 'classical' coordinate system. To this purpose we turn the top and right
spine invisible and move the bottom and left one around:

# the next "inline" statement is only needed,
# if you are working with "ipython notebook"
%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 70, endpoint=True)
F1 = np.sin(2* X)
F2 = (2*X**5 + 4*X**4 - 4.8*X**3 + 1.2*X**2 + X + 1)*np.exp(-X**2)

fig, ax = plt.subplots()

# making the top and right spine invisible:
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
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# moving bottom spine up to y=0 position:
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))

# moving left spine to the right to position x == 0:
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

ax.plot(X, F1, X, F2)

plt.show()

CUSTOMIZING TICKS

Matplotlib has so far - in all our previous examples - automatically taken over the task of spacing points on the
axis. We can see for example that the X axis in our previous example was numbered -6. -4, -2, 0,
2, 4, 6 , whereas the Y axis was numbered -1.0,  0, 1.0, 2.0, 3.0

xticks is a method, which can be used to get or to set the current tick locations and the labels. The same is true
for yticks:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

xticks = ax.get_xticks()
xticklabels = ax.get_xticklabels()
print(xticks, xticklabels)
for i in range(6):

print(xticklabels[i])
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yticks = ax.get_yticks()
print(yticks)

As we said before, we can also use xticks to set the location of xticks:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

ax.set_xticks([7, 13, 19, 33, 42])

[0.  0.2 0.4 0.6 0.8 1. ] <a list of 6 Text xticklabel objects>
Text(0, 0, '')
Text(0, 0, '')
Text(0, 0, '')
Text(0, 0, '')
Text(0, 0, '')
Text(0, 0, '')
[0.  0.2 0.4 0.6 0.8 1. ]
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Now, we will set both the locations and the labels of the xticks:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

ax.set_xticks([7, 13, 19, 33, 42])
ax.set_xticklabels(['Berlin', 'London', 'Hamburg', 'Toronto'])

Output: [<matplotlib.axis.XTick at 0x7f8a1e5bd080>,
<matplotlib.axis.XTick at 0x7f8a1e5bdd68>,
<matplotlib.axis.XTick at 0x7f8a1e2237b8>,
<matplotlib.axis.XTick at 0x7f8a1e592a20>,
<matplotlib.axis.XTick at 0x7f8a1e5921d0>]
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Let's get back to our previous example with the trigonometric functions. Most people might consider factors of
Pi to be more appropriate for the X axis than the integer labels:

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 70, endpoint=True)
X = np.linspace(-2 * np.pi, 2 * np.pi, 70, endpoint=True)
F1 = np.sin(X**2)
F2 = X * np.sin(X)

fig, ax = plt.subplots()

# making the top and right spine invisible:
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# moving bottom spine up to y=0 position:
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
# moving left spine to the right to position x == 0:
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

ax.set_xticks( [-6.28, -3.14, 3.14, 6.28])
ax.set_yticks([-3, -1, 0, +1, 3])

Output: [Text(0, 0, 'Berlin'),
Text(0, 0, 'London'),
Text(0, 0, 'Hamburg'),
Text(0, 0, 'Toronto')]
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ax.plot(X, F1)
ax.plot(X, F2)

plt.show()

There is an easier way to set the values of the xticks so that we do not have to caculate them manually. We use
plt.MultipleLocator with np.pi/2 as argument:

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 100)
F1 = np.sin(X)
F2 = 3 * np.sin(X)
fig, ax = plt.subplots()

ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))

ax.plot(X, F1, X, F2)

plt.show()
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SETTING TICK LABELS

We want to rename the xticks now with custom markers. We will use the method xticks again for this purpose
as we did in our previous examples. But this time we will call xticks with two parameters: The first one is the
same list we used before, i.e. the positions on the x axis, where we want to have the ticks. The second
parameter is a list of the same size with corresponding LaTeX tick marks, i.e. the text which we want to see
instead of the values. The LaTeX notation has to be a raw string in most cases to suppress the escaping
mechanism of Python, because the LaTeX notation heavily uses and relies on the backslash.

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 100)
F1 = np.sin(X)
F2 = 3 * np.sin(X)
fig, ax = plt.subplots()

ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
ax.set_xticklabels([r'$-2\pi$', r'$-\frac{3\pi}{2}$', r'$-\pi$',

r'$-\frac{\pi}{2}$', 0, r'$\frac{\pi}{2}$',
r'$+\pi$', r'$\frac{3\pi}{2}$', r'$+2\pi$'])

ax.plot(X, F1, X, F2)

plt.show()
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ADJUSTING THE TICKLABELS

We want to increase the legibility of the ticklabels. We will increase the font size, and we will render them on
a semi transparant background.

print(ax.get_xticklabels())

for xtick in ax.get_xticklabels():
print(xtick)

labels = [xtick.get_text() for xtick in ax.get_xticklabels()]
print(labels)

Let's increase the fontsize and make the font semi transparant:

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 170, endpoint=True)

<a list of 4 Text xticklabel objects>

Text(-6.28, 0, '$-2\\pi$')
Text(-3.14, 0, '$-\\pi$')
Text(3.14, 0, '$+\\pi$')
Text(6.28, 0, '$+2\\pi$')

['$-2\\pi$', '$-\\pi$', '$+\\pi$', '$+2\\pi$']
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F1 = np.sin(X**3 / 2)

fig, ax = plt.subplots()

ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
ax.set_xticklabels([r'$-2\pi$', r'$-\frac{3\pi}{2}$', r'$-\pi$',

r'$-\frac{\pi}{2}$', 0, r'$\frac{\pi}{2}$',
r'$+\pi$', r'$\frac{3\pi}{2}$', r'$+2\pi$'])

for xtick in ax.get_xticklabels():
xtick.set_fontsize(18)
xtick.set_bbox(dict(facecolor='white', edgecolor='None', alph

a=0.7 ))

for ytick in ax.get_yticklabels():
ytick.set_fontsize(14)
ytick.set_bbox(dict(facecolor='white', edgecolor='None', alph

a=0.7 ))

ax.plot(X, F1, label="$sin(x)$")

ax.legend(loc='lower left')

plt.show()
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M A T P L O T L I B  T U T O R I A L ,  A D D I N G
L E G E N D S  A N D  A N N O T A T I O N S

ADDING A LEGEND

This chapter of our tutorial is about legends. Legends are the
classical stories from ancient Greece or other places which are
usually devoured by adolescents. They have to read it and this is
where the original meaning comes from. The word legend
stems from Latin and it means in Latin "to be read". So we can
say legends are the things in a graph or plot which have to be
read to understand the plot. It gives us valuable information
about the visualized data.

Before legends have been used in mathematical graphs, they
have been used in maps. Legends - as they are found in maps -
describe the pictorial language or symbology of the map.
Legends are used in line graphs to explain the function or the
values underlying the different lines of the graph.

We will demonstrate in the following simple example how we
can place a legend on a graph. A legend contains one or more entries. Every entry consists of a key and a
label.

The pyplot function

legend(*args, **kwargs)

places a legend on the axes.

All we have to do to create a legend for lines, which already exist on the axes, is to simply call the function
"legend" with an iterable of strings, one for each legend item.

We have mainly used trigonometric functions in our previous chapter. For a change we want to use now
polynomials. We will use the Polynomial class which we have defined in our chapter Polynomials.

# the module polynomials can be downloaded from
# https://www.python-course.eu/examples/polynomials.py
from polynomials import Polynomial
import numpy as np
import matplotlib.pyplot as plt
p = Polynomial(-0.8, 2.3, 0.5, 1, 0.2)
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p_der = p.derivative()

fig, ax = plt.subplots()
X = np.linspace(-2, 3, 50, endpoint=True)
F = p(X)
F_derivative = p_der(X)
ax.plot(X, F)
ax.plot(X, F_derivative)

ax.legend(['p', 'derivation of p'])

If we add a label to the plot function, the value will be used as the label in the legend command. There is
anolther argument that we can add to the legend function: We can define the location of the legend inside of
the axes plot with the parameter loc :

If we add a label to the plot function, the values will be used in the legend command:

from polynomials import Polynomial
import numpy as np
import matplotlib.pyplot as plt
p = Polynomial(-0.8, 2.3, 0.5, 1, 0.2)
p_der = p.derivative()

fig, ax = plt.subplots()
X = np.linspace(-2, 3, 50, endpoint=True)
F = p(X)
F_derivative = p_der(X)
ax.plot(X, F, label="p")
ax.plot(X, F_derivative, label="derivation of p")

ax.legend(loc='upper left')

Output: <matplotlib.legend.Legend at 0x7fd2efcad908>
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It might be even more interesting to see the actual function in mathematical notation in our legend. Our
polynomial class is capable of printing the function in LaTeX notation.

print(p)
print(p_der)

We can also use LaTeX in our labels, if we include it in '$' signs.

from polynomials import Polynomial
import numpy as np
import matplotlib.pyplot as plt
p = Polynomial(2, 3, -4, 6)
p_der = p.derivative()

fig, ax = plt.subplots()
X = np.linspace(-2, 3, 50, endpoint=True)
F = p(X)
F_derivative = p_der(X)
ax.plot(X, F, label="$" + str(p) + "$")
ax.plot(X, F_derivative, label="$" + str(p_der) + "$")

ax.legend(loc='upper left')

Output: <matplotlib.legend.Legend at 0x7fd2efc15cf8>

-0.8x^4 + 2.3x^3 + 0.5x^2 + 1x^1 + 0.2
-3.2x^3 + 6.8999999999999995x^2 + 1.0x^1 + 1
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In many cases we don't know what the result may look like before you plot it. It could be for example, that the
legend will overshadow an important part of the lines. If you don't know what the data may look like, it may
be best to use 'best' as the argument for loc. Matplotlib will automatically try to find the best possible location
for the legend:

from polynomials import Polynomial
import numpy as np
import matplotlib.pyplot as plt
p = Polynomial(2, -1, -5, -6)
p_der = p.derivative()
print(p_der)

fig, ax = plt.subplots()
X = np.linspace(-2, 3, 50, endpoint=True)
F = p(X)
F_derivative = p_der(X)
ax.plot(X, F, label="$" + str(p) + "$")
ax.plot(X, F_derivative, label="$" + str(p_der) + "$")

ax.legend(loc='best')

Output: <matplotlib.legend.Legend at 0x7fd2efb99a58>
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We will go back to trigonometric functions in the following examples. These examples show that

loc='best'

can work pretty well:

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 70, endpoint=True)
F1 = np.sin(0.5*X)
F2 = -3 * np.cos(0.8*X)

plt.xticks( [-6.28, -3.14, 3.14, 6.28],
[r'$-2\pi$', r'$-\pi$', r'$+\pi$', r'$+2\pi$'])

plt.yticks([-3, -1, 0, +1, 3])
plt.plot(X, F1, label="$sin(0.5x)$")
plt.plot(X, F2, label="$-3 cos(0.8x)$")
plt.legend(loc='best')

plt.show()

6x^2 - 2x^1 - 5
Output: <matplotlib.legend.Legend at 0x7fd2ef370f60>
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import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 70, endpoint=True)
F1 = np.sin(0.5*X)
F2 = 3 * np.cos(0.8*X)

plt.xticks( [-6.28, -3.14, 3.14, 6.28],
[r'$-2\pi$', r'$-\pi$', r'$+\pi$', r'$+2\pi$'])

plt.yticks([-3, -1, 0, +1, 3])
plt.plot(X, F1, label="$sin(0.5x)$")
plt.plot(X, F2, label="$3 cos(0.8x)$")
plt.legend(loc='best')

plt.show()
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ANNOTATIONS

The visualizations of function plots often makes annotations necessary. This means we draw the readers
attentions to important points and areas of the plot. To this purpose we use texts, labels and arrows. We have
already used axis labels and titles for this purpose, but these are 'annotations' for the whole plot. We can easily
annotate points inside the axis or on the graph with the annotate method of an axes object. In an
annotation, there are two points to consider: the location being annotated represented by the argument xy and
the location of the text xytext. Both of these arguments are (x,y) tuples.

We demonstrate how easy it is in matplotlib to to annotate plots in matplotlib with the annotate method. We
will annotate the local maximum and the local minimum of a function. In its simplest form annotate
method needs two arguments annotate(s, xy) , where s is the text string for the annotation and xx
is the position of the point to be annotated:

from polynomials import Polynomial
import numpy as np
import matplotlib.pyplot as plt
p = Polynomial(1, 0, -12, 0)
p_der = p.derivative()

fig, ax = plt.subplots()
X = np.arange(-5, 5, 0.1)
F = p(X)

F_derivative = p_der(X)
ax.grid()

maximum = (-2, p(-2))
minimum = (2, p(2))
ax.annotate("local maximum", maximum)
ax.annotate("local minimum", minimum)

ax.plot(X, F, label="p")
ax.plot(X, F_derivative, label="derivation of p")

ax.legend(loc='best')
plt.show()
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If you are not satisfied with the automatic positioning of the text, you can assign a tuple with a position for the
text to the keyword parameter xytext:

from polynomials import Polynomial
import numpy as np
import matplotlib.pyplot as plt
p = Polynomial(1, 0, -12, 0)
p_der = p.derivative()

fig, ax = plt.subplots()
X = np.arange(-5, 5, 0.1)
F = p(X)

F_derivative = p_der(X)
ax.grid()

ax.annotate("local maximum",
xy=(-2, p(-2)),
xytext=(-1, p(-2)+35),
arrowprops=dict(facecolor='orange'))

ax.annotate("local minimum",
xy=(2, p(2)),
xytext=(-2, p(2)-40),
arrowprops=dict(facecolor='orange', shrink=0.05))

ax.annotate("inflection point",
xy=(0, p(0)),
xytext=(-3, -30),
arrowprops=dict(facecolor='orange', shrink=0.05))
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ax.plot(X, F, label="p")
ax.plot(X, F_derivative, label="derivation of p")

ax.legend(loc='best')
plt.show()

We have to provide some informations to the parameters of annotate, we have used in our previous example.

Parameter Meaning

xy coordinates of the arrow tip

xytext coordinates of the text location

The xy and the xytext locations of our example are in data coordinates. There are other coordinate systems
available we can choose. The coordinate system of xy and xytext can be specified string values assigned to
xycoords and textcoords. The default value is 'data':

String Value Coordinate System

figure points points from the lower left corner of the figure

figure pixels pixels from the lower left corner of the figure

figure fraction 0,0 is lower left of figure and 1,1 is upper right

axes points points from lower left corner of axes
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String Value Coordinate System

axes pixels pixels from lower left corner of axes

axes fraction 0,0 is lower left of axes and 1,1 is upper right

data use the axes data coordinate system

Additionally, we can also specify the properties of the arrow. To do so, we have to provide a dictionary of
arrow properties to the parameter arrowprops:

arrowprops key description

width the width of the arrow in points

headlength The length of the arrow head in points

headwidth the width of the base of the arrow head in points

shrink move the tip and base some percent away from the annotated point and text

**kwargs any key for matplotlib.patches.Polygon, e.g., facecolor

Of course, the sinus function has "boring" and interesting values. Let's assume that you are especially
interested in the value of 3 ∗ sin(3 ∗ pi /4).

import numpy as np
print(3 * np.sin(3 * np.pi/4))

The numerical result doesn't look special, but if we do a symbolic calculation for the above expression we get
3

√2
. Now we want to label this point on the graph. We can do this with the annotate function. We want to

annotate our graph with this point.

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-2 * np.pi, 2 * np.pi, 100)
F1 = np.sin(X)

2.121320343559643
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F2 = 3 * np.sin(X)
fig, ax = plt.subplots()

ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2))
#plt.xticks(np.arange(-2 * np.pi, 2.5 * np.pi, np.pi / 2))
ax.set_xticklabels([r'$-2\pi$', r'$-\frac{3\pi}{2}$', r'$-\pi$',

r'$-\frac{\pi}{2}$', 0, r'$\frac{\pi}{2}$',
r'$+\pi$', r'$\frac{3\pi}{2}$', r'$+2\pi$'])

ax.plot(X, F1, label="$sin(x)$")
ax.plot(X, F2, label="$3 sin(x)$")
ax.legend(loc='lower left')
x = 3 * np.pi / 4

# Plot vertical line:
ax.plot([x, x],[-3, 3 * np.sin(x)], color ='blue', linewidth=2.5,
linestyle="--")
# Print the blue dot:
ax.scatter([x,],[3 * np.sin(x),], 50, color ='blue')

text_x, text_y = (3.5, 2.2)
ax.annotate(r'$3\sin(\frac{3\pi}{4})=\frac{3}{\sqrt{2}}$',

xy=(x, 3 * np.sin(x)),
xytext=(text_x, text_y),
arrowprops=dict(facecolor='orange', shrink=0.05),
fontsize=12)

plt.show()

MATPLOTLIB TUTORIAL, ADDING LEGENDS AND ANNOTATIONS 207



SOME MORE CURVE SKETCHING

There is anothe example, in which we play around with the arrows and annoate the extrema.

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-4.1, 3.1, 150, endpoint=True)
F = X**5 + 3*X**4 - 11*X**3 - 27*X**2 + 10*X + 24

fig, ax = plt.subplots()
ax.plot(X, F)

minimum1 = -1.5264814, -7.051996717492152
minimum2 = 2.3123415793720303, -81.36889464201387
ax.annotate("minima",

xy=minimum1,
xytext=(-1.5, -50),
arrowprops=dict(arrowstyle="->",

connectionstyle="angle3,angleA=0,angle
B=-90"))
ax.annotate(" ",

xy=minimum2,
xytext=(-0.7, -50),
arrowprops=dict(arrowstyle="->",

connectionstyle="angle3,angleA=0,angle
B=-90"))

maximum1 = -3.35475845886632, 56.963107876630595
maximum2 = .16889828232847673, 24.868343482875485
ax.annotate("maxima", xy=maximum1,

xytext=(-1.5, 30),
arrowprops=dict(arrowstyle="->",

connectionstyle="angle3,angleA=0,angleB=-9
0"))
ax.annotate(" ", xy=maximum2,

xytext=(-0.6, 30),
arrowprops=dict(arrowstyle="->",

connectionstyle="angle3,angleA=0,angleB=-9
0"))

zeroes = -4, -2, -1, 1, 3
for zero in zeroes:

zero = zero, 0
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ax.annotate("Zeroes",
xy=zero,
color="orange",
bbox=dict(boxstyle="round", fc="none", ec="gree

n"),
xytext=(1, 40),
arrowprops=dict(arrowstyle="->", color="orange",

connectionstyle="angle3,angleA=0,angleB=-9
0"))

plt.show()

The following program visualizes the various arrowstyles:

import matplotlib.pyplot as plt

def demo_con_style(ax, connectionstyle):
x1, y1 = 0.3, 0.2
x2, y2 = 0.8, 0.6

ax.plot([x1, x2], [y1, y2], ".")
ax.annotate("",

xy=(x1, y1), xycoords='data',
xytext=(x2, y2), textcoords='data',
arrowprops=dict(arrowstyle="->", color="0.5",

shrinkA=5, shrinkB=5,
patchA=None, patchB=None,
connectionstyle=connectionstyle))
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ax.text(.05, .95, connectionstyle.replace(",", ",\n"),
transform=ax.transAxes, ha="left", va="top")

fig, axs = plt.subplots(3, 5, figsize=(8, 4.8))
demo_con_style(axs[0, 0], "angle3,angleA=90,angleB=0")
demo_con_style(axs[1, 0], "angle3,angleA=0,angleB=90")
demo_con_style(axs[0, 1], "arc3,rad=0.")
demo_con_style(axs[1, 1], "arc3,rad=0.3")
demo_con_style(axs[2, 1], "arc3,rad=-0.3")
demo_con_style(axs[0, 2], "angle,angleA=-90,angleB=180,rad=0")
demo_con_style(axs[1, 2], "angle,angleA=-90,angleB=180,rad=5")
demo_con_style(axs[2, 2], "angle,angleA=-90,angleB=10,rad=5")
demo_con_style(axs[0, 3], "arc,angleA=-90,angleB=0,armA=30,armB=3
0,rad=0")
demo_con_style(axs[1, 3], "arc,angleA=-90,angleB=0,armA=30,armB=3
0,rad=5")
demo_con_style(axs[2, 3], "arc,angleA=-90,angleB=0,armA=0,armB=4
0,rad=0")
demo_con_style(axs[0, 4], "bar,fraction=0.3")
demo_con_style(axs[1, 4], "bar,fraction=-0.3")
demo_con_style(axs[2, 4], "bar,angle=180,fraction=-0.2")

for ax in axs.flat:
ax.set(xlim=(0, 1), ylim=(0, 1), xticks=[], yticks=[], aspec

t=1)
fig.tight_layout(pad=0.2)

plt.show()
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M A T P L O T L I B  T U T O R I A L :  S U B P L O T S

We have given so far lots of examples for plotting graphs in the
previous chapters of our Python tutorial on Matplotlib. A
frequently asked question is how to have multiple plots in one
graph?

In the simplest case this might mean, that you have one curve
and you want another curve printed over it. This is not a
problem, because it will be enough to put the two plots in your
scripts, as we have seen before. The more interesting case is, if
you want two plots beside of each other for example. In one
figure but in two subplots. The idea is to have more than one
graph in one window and each graph appears in its own subplot.

We will demonstrate in our examples how this can be
accomplished with the funtion subplots .

CREATING SUBPLOTS WITH SUBPLOTS

The function subplot create a figure and a set of subplots. It is a wrapper function to make it convenient to
create common layouts of subplots, including the enclosing figure object, in a single call.

This function returns a figure and an Axes object or an array of Axes objects.

If we call this function without any parameters - like we do in the following example - a Figure object and one
Axes object will be returned:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
print(fig, ax)
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The parameter of subplots function are:

subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,
subplot_kw=None, gridspec_kw=None, **fig_kw)

Parameter Meaning

nrows, ncols
int, optional, default: 1

Number of rows/columns of the subplot grid.

sharex

bool or {'none', 'all', 'row', 'col'}, default: False
Controls sharing of properties among x ( sharex ) axis: If sharex is set to True or all , the x-axis will

be shared among all subplots. If sharex is set to False or none , each x-axis of a subplot will be
independent. If it is set to row , each subplot row will share an x-axis. If it is set to col , each subplot column

will share an x-axis.

sharey

analogue to sharex
When subplots have a shared x-axis along a column, only the x tick labels of the bottom subplot are created.

Similarly, when subplots have a shared y-axis along a row, only the y tick labels of the first column subplot are
created.

squeeze
bool, optional, default: True

If squeeze is set to True , extra dimensions are squeezed out from the returned Axes object

num
integer or string, optional, default: None

A .pyplot.figure keyword that sets the figure number or label.

subplot_kw
dict, optional

Dict with keywords passed to the ~matplotlib.figure.Figure.add_subplot call used to create each

Figure(432x288) AxesSubplot(0.125,0.125;0.775x0.755)
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Parameter Meaning

subplot.

gridspec_kw
dict, optional

Dict with keywords passed to the ~matplotlib.gridspec.GridSpec constructor used to create the grid
the subplots are placed on.

**fig_kw All additional keyword arguments are passed to the .pyplot.figure call.

In the previous chapters of our tutorial, we saw already the simple case of creating one figure and one axes.

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2) + np.cos(x)

#Creates just a figure and only one subplot
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

We will demonstrate now, how to create to subplots beside of each other. By setting the parameter sharey

Output: Text(0.5, 1.0, 'Simple plot')

MATPLOTLIB TUTORIAL: SUBPLOTS 214



to True , we make sure that the y labels are not repeated on the right subplot:

import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))

fig, (ax1, ax2) = plt.subplots(1, 2,
sharey='row')

ax1.text(0.5, 0.5,
"left",
color="green",
fontsize=18,
ha='center')

ax2.text(0.5, 0.5,
"right",
color="green",
fontsize=18,
ha='center')

plt.show()

Now with some 'real' data:

f, (ax1, ax2) = plt.subplots(1, 2,
sharey=True)

derivative = 2 * x * np.cos(x**2) - np.sin(x)

<Figure size 432x288 with 0 Axes>
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ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.plot(x, derivative)

We demonstrate in the following example how to create a subplot for polar plotting. We achieve this by
creating a key polar in the the subplot_kw dictionary and set it to True :

fig, ax = plt.subplots(1, subplot_kw=dict(polar=True))
ax.plot(x, np.sin(x) * np.cos(x), "--g")

Output: [<matplotlib.lines.Line2D at 0x7fc9509f7a90>]

Output: [<matplotlib.lines.Line2D at 0x7fc9519bb650>]
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The first two parameters of subplots define the numbers of rows and columns respectively. We
demonstrate this in the following example. To demonstrate the structure we use the text method of the axis
objects. We use it to put the

import matplotlib.pyplot as plt
rows, cols = 2, 3
fig, ax = plt.subplots(rows, cols,

sharex='col',
sharey='row')

for row in range(rows):
for col in range(cols):

ax[row, col].text(0.5, 0.5,
str((row, col)),
color="green",
fontsize=18,
ha='center')

plt.show()

import matplotlib.pyplot as plt
#plt.figure(figsize=(6, 4))

fig, ax = plt.subplots(2,
sharex='col', sharey='row')

ax[0].text(0.5, 0.5,
"top",
color="green",
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fontsize=18,
ha='center')

ax[1].text(0.5, 0.5,
"bottom",
color="green",
fontsize=18,
ha='center')

plt.show()

We will create now a similar structure with two subplots on top of each other containing polar plots:

fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
axes[0, 0].plot(x, y)
axes[0, 1].plot(x, np.sin(x**2) + np.cos(x**3))
axes[1, 0].plot(x, np.cos(x) * np.sin(x**2))
axes[1, 1].plot(x, derivative, "g--")
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Now with titles for subplots:

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))

def f(x):
return np.sin(x) - x * np.cos(x)

def fp(x):
""" The derivative of f """
return x * np.sin(x)

X = np.arange(-5, 5.0, 0.05)

fig, ax = plt.subplots(2,
sharex='col', sharey='row')

ax[0].plot(X, f(X), 'bo', X, f(X), 'k')
ax[0].set(title='The function f')

ax[1].plot(X, fp(X), 'go', X, fp(X), 'k')
ax[1].set(xlabel='X Values', ylabel='Y Values',

title='Derivative Function of f')

plt.show()

Output: [<matplotlib.lines.Line2D at 0x7fc9506cdad0>]
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import matplotlib.pyplot as plt
python_course_green = "#476042"
python_course_orange = "#f17c0b"
python_course_green_light = "#6a9662"
#plt.figure(figsize=(6, 4))
fig, ax = plt.subplots(2, 2,

figsize=(6, 4),
facecolor=python_course_green_light)

ax[0, 0].text(0.5, # x-Koordinate, 0 ganz links, 1 ganz rechts
0.5, # y-Koordinate, 0 ganz oben, 1 ganz unten
'ax[0, 0]', # der Text der ausgegeben wird
horizontalalignment='center', # abgekürzt 'ha'
verticalalignment='center', # abgekürzt 'va'
fontsize=20,
alpha=.5 )

ax[0, 0].set_facecolor('xkcd:salmon')

ax[1,1].text(0.5, 0.5,
'ax[1, 1]',
ha='center', va='center',
fontsize=20,
color="y")

ax[1, 0].set_facecolor((0.8, 0.6, 0.5))
ax[0, 1].set_facecolor((1, 1, 0.5))

<Figure size 432x288 with 0 Axes>
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ax[1, 1].set_facecolor(python_course_green)
plt.show()

Let us get rid of the ticks again. This time we cannot use plt.xticks(()) and plt.yticks(()) .
We have to use the set_xticks(()) and set_yticks(()) methods instead.

Activating all subplot of the 2x2 grid looks like this:

import matplotlib.pyplot as plt
python_course_green = "#476042"
fig = plt.figure(figsize=(6, 4))
sub1 = plt.subplot(2, 2, 1)
sub1.set_xticks(())
sub1.set_yticks(())
sub1.text(0.5, 0.5, 'subplot(2,2,1)', ha='center', va='center',

size=20, alpha=.5)

sub2 = plt.subplot(2, 2, 2)
sub2.set_xticks(())
sub2.set_yticks(())
sub2.text(0.5, 0.5, 'subplot(2,2,2)', ha='center', va='center',

size=20, alpha=.5)

sub3 = plt.subplot(2, 2, 3)
sub3.set_xticks(())
sub3.set_yticks(())
sub3.text(0.5, 0.5, 'subplot(2,2,3)', ha='center', va='center',

size=20, alpha=.5)
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sub4 = plt.subplot(2, 2, 4, facecolor=python_course_green)
sub4.set_xticks(())
sub4.set_yticks(())
sub4.text(0.5, 0.5, 'subplot(2,2,4)', ha='center', va='center',

size=20, alpha=.5, color="y")

fig.tight_layout()
plt.show()

The previous examples are solely showing how to create a subplot design. Usually, you want to write Python
programs using Matplotlib and its subplot features to depict some graphs. We will demonstrate how to
populate the previous subplot design with some example graphs:

import numpy as np
from numpy import e, pi, sin, exp, cos
import matplotlib.pyplot as plt
def f(t):

return exp(-t) * cos(2*pi*t)

def fp(t):
return -2*pi * exp(-t) * sin(2*pi*t) - e**(-t)*cos(2*pi*t)

def g(t):
return sin(t) * cos(1/(t+0.1))

def g(t):
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return sin(t) * cos(1/(t))

python_course_green = "#476042"
fig = plt.figure(figsize=(6, 4))

t = np.arange(-5.0, 1.0, 0.1)

sub1 = fig.add_subplot(221) # instead of plt.subplot(2, 2, 1)
sub1.set_title('The function f') # non OOP: plt.title('The functio
n f')
sub1.plot(t, f(t))

sub2 = fig.add_subplot(222, facecolor="lightgrey")
sub2.set_title('fp, the derivation of f')
sub2.plot(t, fp(t))

t = np.arange(-3.0, 2.0, 0.02)
sub3 = fig.add_subplot(223)
sub3.set_title('The function g')
sub3.plot(t, g(t))

t = np.arange(-0.2, 0.2, 0.001)
sub4 = fig.add_subplot(224, facecolor="lightgrey")
sub4.set_title('A closer look at g')
sub4.set_xticks([-0.2, -0.1, 0, 0.1, 0.2])
sub4.set_yticks([-0.15, -0.1, 0, 0.1, 0.15])
sub4.plot(t, g(t))

plt.plot(t, g(t))

plt.tight_layout()
plt.show()
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Another example:

import matplotlib.pyplot as plt
X = [ (2,1,1), (2,3,4), (2,3,5), (2,3,6) ]
for nrows, ncols, plot_number in X:

plt.subplot(nrows, ncols, plot_number)

The following example shows nothing special. We will remove the xticks and play around with the size of the
figure and the subplots. To do this we introduce the keyword paramter figsize of 'figure' and the function
'subplot_adjust' along with its keyword parameters bottom, left, top, right:

import matplotlib.pyplot as plt
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fig =plt.figure(figsize=(6,4))
fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, righ
t=0.975)

X = [ (2,1,1), (2,3,4), (2,3,5), (2,3,6) ]
for nrows, ncols, plot_number in X:

sub = fig.add_subplot(nrows, ncols, plot_number)
sub.set_xticks([])
sub.set_yticks([])

Alternative Solution:

As the first three three elements of 2x3 grid have to be joined, we can choose a tuple notation, inour case (1,3)
in (2,3,(1,3)) to define that the first three elements of a notional 2x3 grid are joined:

import matplotlib.pyplot as plt
fig =plt.figure(figsize=(6,4))
fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, righ
t=0.975)

X = [ (2,3,(1,3)), (2,3,4), (2,3,5), (2,3,6) ]
for nrows, ncols, plot_number in X:

sub = fig.add_subplot(nrows, ncols, plot_number)
sub.set_xticks([])
sub.set_yticks([])
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E X E R C I S E

How can you create a subplotdesign of a 3x2 design, where the complete first column is spanned?

Solution:

import matplotlib.pyplot as plt
X = [ (1,2,1), (3,2,2), (3,2,4), (3,2,6) ]
for nrows, ncols, plot_number in X:

plt.subplot(nrows, ncols, plot_number)
plt.xticks([])
plt.yticks([])

EXERCISE 227



E X E R C I S E

Create a subplot layout for the following design:

Solution:

import matplotlib.pyplot as plt
X = [ (4,2,1),(4,2,2), (4,2,3), (4,2,5), (4,2,(4,6)), (4,1,4)]
plt.subplots_adjust(bottom=0, left=0, top = 0.975, right=1)
for nrows, ncols, plot_number in X:

plt.subplot(nrows, ncols, plot_number)
plt.xticks([])
plt.yticks([])

plt.show()
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SUBPLOTS WITH GRIDSPEC

'matplotlib.gridspec' contains a class GridSpec. It can be used as an alternative to subplot to specify the
geometry of the subplots to be created. The basic idea behind GridSpec is a 'grid'. A grid is set up with a
number of rows and columns. We have to define after this, how much of the grid a subplot should span.

The following example shows the the trivial or simplest case, i.e. a 1x1 grid

import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

fig = plt.figure()
gs = GridSpec(1, 1)
ax = fig.add_subplot(gs[0,0])

plt.show()
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We could have used some of the parameters of Gridspec, e.g. we can define, that our graph should begin at 20
% from the bottom and 15 % to the left side of the available figure area:

import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

fig = plt.figure()
gs = GridSpec(1, 1,

bottom=0.2,
left=0.15,
top=0.8)

ax = fig.add_subplot(gs[0,0])

plt.show()

The next example shows a complexer example with a more elaborate grid design:
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import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))
G = gridspec.GridSpec(3, 3)

axes_1 = plt.subplot(G[0, :])
axes_1.set_xticks(())
axes_1.set_yticks(())
axes_1.text(0.5, 0.5, 'Axes 1',

ha='center', va='center',
size=24, alpha=.5)

axes_2 = plt.subplot(G[1, :-1])
axes_2.set_xticks(())
axes_2.set_yticks(())
axes_2.text(0.5, 0.5, 'Axes 2',

ha='center', va='center',
size=24, alpha=.5)

axes_3 = plt.subplot(G[1:, -1])
axes_3.set_xticks(())
axes_3.set_yticks(())
axes_3.text(0.5, 0.5, 'Axes 3',

ha='center', va='center',
size=24, alpha=.5)

axes_4 = plt.subplot(G[-1, 0])
axes_4.set_xticks(())
axes_4.set_yticks(())
axes_4.text(0.5, 0.5, 'Axes 4',

ha='center', va='center',
size=24, alpha=.5)

axes_5 = plt.subplot(G[-1, -2])
axes_5.set_xticks(())
axes_5.set_yticks(())
axes_5.text(0.5, 0.5, 'Axes 5',

ha='center', va='center',
size=24, alpha=.5)

plt.tight_layout()
plt.show()
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We will use now the grid specification from the previous example to populate it with the graphs of some
functions:

import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(6, 4))
G = gridspec.GridSpec(3, 3)

X = np.linspace(0, 2 * np.pi, 50, endpoint=True)
F1 = 2.8 * np.cos(X)
F2 = 5 * np.sin(X)
F3 = 0.3 * np.sin(X)

axes_1 = plt.subplot(G[0, :])
axes_1.plot(X, F1, 'r-', X, F2)

axes_2 = plt.subplot(G[1, :-1])
axes_2.plot(X, F3)

axes_3 = plt.subplot(G[1:, -1])
axes_3.plot([1,2,3,4], [1,10,100,1000], 'b-')

axes_4 = plt.subplot(G[-1, 0])
axes_4.plot([1,2,3,4], [47, 11, 42, 60], 'r-')

axes_5 = plt.subplot(G[-1, -2])
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axes_5.plot([1,2,3,4], [7, 5, 4, 3.8])

plt.tight_layout()
plt.show()

A PLOT INSIDE OF ANOTHER PLOT
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()

X = [1, 2, 3, 4, 5, 6, 7]
Y = [1, 3, 4, 2, 5, 8, 6]

axes1 = fig.add_axes([0.1, 0.1, 0.9, 0.9]) # main axes
axes2 = fig.add_axes([0.2, 0.6, 0.4, 0.3]) # inset axes

# main figure
axes1.plot(X, Y, 'r')
axes1.set_xlabel('x')
axes1.set_ylabel('y')
axes1.set_title('title')

# insert
axes2.plot(Y, X, 'g')
axes2.set_xlabel('y')
axes2.set_ylabel('x')
axes2.set_title('title inside');
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SETTING THE PLOT RANGE

It's possible to configure the ranges of the axes. This can be done by using the set_ylim and set_xlim methods
in the axis object. With axis('tight') we create automatrically "tightly fitted" axes ranges:

import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 3, figsize=(10, 4))

x = np.arange(0, 5, 0.25)

axes[0].plot(x, x**2, x, x**3)
axes[0].set_title("default axes ranges")

axes[1].plot(x, x**2, x, x**3)
axes[1].axis('tight')
axes[1].set_title("tight axes")

axes[2].plot(x, x**2, x, x**3)
axes[2].set_ylim([0, 60])
axes[2].set_xlim([2, 5])
axes[2].set_title("custom axes range");
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LOGARITHMIC SCALE

It is also possible to set a logarithmic scale for one or both axes. This functionality is in fact only one
application of a more general transformation system in Matplotlib. Each of the axes' scales are set seperately
using set_xscale and set_yscale methods which accept one parameter (with the value "log" in this case):

import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

x = np.arange(0, 5, 0.25)

ax.plot(x, x**2, x, x**3)

ax.set_yscale("log")

plt.show()
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import numpy as np
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()

x = np.arange(1,7,0.1)
ax1.plot(x, 2 * np.pi * x, lw=2, color="blue")
ax1.set_ylabel(r"Circumference $(cm)$", fontsize=16, color="blue")
for label in ax1.get_yticklabels():

label.set_color("blue")

ax2 = ax1.twinx()
ax2.plot(x, np.pi * x ** 2, lw=2, color="darkgreen")
ax2.set_ylabel(r"area $(cm^2)$", fontsize=16, color="darkgreen")
for label in ax2.get_yticklabels():

label.set_color("darkgreen")
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The following topics are not directly related to subplotting, but we want to present them to round up the
introduction into the basic possibilities of matplotlib. The first one shows how to define grid lines and the
second one is quite important. It is about saving plots in image files.

GRID LINES
import numpy as np
import matplotlib.pyplot as plt
def f(t):

return np.exp(-t) * np.cos(2*np.pi*t)
def g(t):

return np.sin(t) * np.cos(1/(t+0.1))

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.subplot(212)
plt.plot(t1, g(t1), 'ro', t2, f(t2), 'k')
plt.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
plt.show()

SAVING FIGURES

The savefig method can be used to save figures to a file:

fig.savefig("filename.png")

It is possible to optionally specify the DPI and to choose between different output formats:

fig.savefig("filename.png", dpi=200)
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Output can be generated in the formats PNG, JPG, EPS, SVG, PGF and PDF.
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M A T P L O T L I B  T U T O R I A L :  G R I D S P E C

We have seen in the last chapter of our
Python tutorial on Matplotlib how to
create a figure with multiple axis or
subplot. To create such figures we used
the subplots function. We will
demonstrate in this chapter how the
submodule of matplotlib gridspec
can be used to specify the location of the
subplots in a figure. In other words, it
specifies the location of the subplots in a
given GridSpec . GridSpec
provides us with additional control over
the placements of subplots, also the the
margins and the spacings between the
individual subplots. It also allows us the
creation of axes which can spread over
multiple grid areas.

We create a figure and four containing axes in the following code. We have covered this in our previous
chapter.

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
fig, axes = plt.subplots(ncols=2, nrows=2, constrained_layout=Tru
e)
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We will create the previous example now by using GridSpec. At first, we have to create a figure object and
after this a GridSpec object. We pass the figure object to the parameter figure of GridSpec . The axes
are created by using add_subplot . The elements of the gridspec are accessed the same way as numpy
arrays.

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
fig = plt.figure(constrained_layout=True)
spec = gridspec.GridSpec(ncols=2, nrows=2, figure=fig)
ax1 = fig.add_subplot(spec[0, 0])
ax2 = fig.add_subplot(spec[0, 1])
ax3 = fig.add_subplot(spec[1, 0])
ax4 = fig.add_subplot(spec[1, 1])
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The above example is not a good usecase of GridSpec . It does not give us any benefit over the use of
subplots . In principle, it is only more complicated in this case.

The importance and power of Gridspec unfolds, if we create subplots that span rows and columns.

We show this in the following example:

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
fig = plt.figure(constrained_layout=True)
gs = fig.add_gridspec(3, 3)
ax1 = fig.add_subplot(gs[0, :])
ax1.set_title('gs[0, :]')
ax2 = fig.add_subplot(gs[1, :-1])
ax2.set_title('gs[1, :-1]')
ax3 = fig.add_subplot(gs[1:, -1])
ax3.set_title('gs[1:, -1]')
ax4 = fig.add_subplot(gs[-1, 0])
ax4.set_title('gs[-1, 0]')
ax5 = fig.add_subplot(gs[-1, -2])
ax5.set_title('gs[-1, -2]')

MATPLOTLIB TUTORIAL: GRIDSPEC 241



:mod: ~matplotlib.gridspec is also indispensable for creating subplots of different widths via a
couple of methods.

The method shown here is similar to the one above and initializes a uniform grid specification, and then uses
numpy indexing and slices to allocate multiple "cells" for a given subplot.

fig = plt.figure(constrained_layout=True)
spec = fig.add_gridspec(ncols=2, nrows=2)
optional_params = dict(xy=(0.5, 0.5),

xycoords='axes fraction',
va='center',
ha='center')

ax = fig.add_subplot(spec[0, 0])
ax.annotate('GridSpec[0, 0]', **optional_params)
fig.add_subplot(spec[0, 1]).annotate('GridSpec[0, 1:]', **optiona
l_params)
fig.add_subplot(spec[1, 0]).annotate('GridSpec[1:, 0]', **optiona
l_params)
fig.add_subplot(spec[1, 1]).annotate('GridSpec[1:, 1:]', **optiona
l_params)

Output: Text(0.5, 1.0, 'gs[-1, -2]')
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Another option is to use the width_ratios and height_ratios parameters. These keyword
arguments are lists of numbers. Note that absolute values are meaningless, only their relative ratios matter.
That means that width_ratios=[2, 4, 8] is equivalent to width_ratios=[1, 2, 4] within
equally wide figures. For the sake of demonstration, we'll blindly create the axes within for loops since we
won't need them later.

fig5 = plt.figure(constrained_layout=True)
widths = [2, 3, 1.5]
heights = [1, 3, 2]
spec5 = fig5.add_gridspec(ncols=3, nrows=3, width_ratios=widths,

height_ratios=heights)
for row in range(3):

for col in range(3):
ax = fig5.add_subplot(spec5[row, col])
label = 'Width: {}\nHeight: {}'.format(widths[col], height

s[row])
ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', v

a='center')

Output: Text(0.5, 0.5, 'GridSpec[1:, 1:]')
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G r i d S p e c  u s i n g
S u b p l o t S p e c
You can create GridSpec from the :class: ~matplotlib.gridspec.SubplotSpec , in which case its
layout parameters are set to that of the location of the given SubplotSpec.

Note this is also available from the more verbose .gridspec.GridSpecFromSubplotSpec .

fig10 = plt.figure(constrained_layout=True)
gs0 = fig10.add_gridspec(1, 2)

gs00 = gs0[0].subgridspec(2, 3)
gs01 = gs0[1].subgridspec(3, 2)

for a in range(2):
for b in range(3):

fig10.add_subplot(gs00[a, b])
fig10.add_subplot(gs01[b, a])
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PSD DEMO

Plotting Power Spectral Density (PSD) in Matplotlib.

The PSD is a common plot in the field of signal processing. NumPy has many useful libraries for computing a
PSD. Below we demo a few examples of how this can be accomplished and visualized with Matplotlib.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.gridspec as gridspec
# Fixing random state for reproducibility
np.random.seed(42)

dt = 0.01
t = np.arange(0, 10, dt)
nse = np.random.randn(len(t))
r = np.exp(-t / 0.05)

cnse = np.convolve(nse, r) * dt
cnse = cnse[:len(t)]
s = 0.1 * np.sin(2 * np.pi * t) + cnse

plt.subplot(211)
plt.plot(t, s)
plt.subplot(212)
plt.psd(s, 512, 1 / dt)
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plt.show()

This type of flexible grid alignment has a wide range of uses. I most often use it when creating multi-axes
histogram plots like the ones shown here:

# Create some normally distributed data
mean = [0, 0]
cov = [[1, 1], [1, 2]]
x, y = np.random.multivariate_normal(mean, cov, 3000).T

# Set up the axes with gridspec
fig = plt.figure(figsize=(6, 6))
grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)
main_ax = fig.add_subplot(grid[:-1, 1:])
y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=mai
n_ax)
x_hist = fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=mai
n_ax)

# scatter points on the main axes
main_ax.plot(x, y, 'ok', markersize=3, alpha=0.2)

# histogram on the attached axes
x_hist.hist(x, 40, histtype='stepfilled',

orientation='vertical', color='gray')
x_hist.invert_yaxis()

y_hist.hist(y, 40, histtype='stepfilled',
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orientation='horizontal', color='gray')
y_hist.invert_xaxis()
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M A T P L O T L I B  T U T O R I A L :
H I S T O G R A M S  A N D  B A R  P L O T S

It's hard to imagine that you open a newspaper or magazin
without seeing some bar charts or histograms telling you
about the number of smokers in certain age groups, the
number of births per year and so on. It's a great way to
depict facts without having to use too many words, but on
the downside they can be used to manipulate or lie with
statistics as well. They provide us with quantitative
information on a wide range of topics. Bar charts and
column charts clearly show us the ranking of our top
politicians. They also inform about consequences of certain
behavior: smoking or not smoking. Advantages and
disadvantages of various activities. Income distributions and so on. On the one hand, they serve as a source of
information for us to see our own thinking and acting in statistical comparison with others, on the other hand
they also - by perceiving them - change our thinking and acting in many cases.

However, we are primarily interested in how to create charts and histograms in this chapter. A splendid way to
create such charts consists in using Python in combination with Matplotlib.

What is a histogram? A formal definition can be: It's a graphical representation of a frequency distribution of
some numerical data. Rectangles with equal width have heights with the associated frequencies.

If we construct a histogram, we start with distributing the range of possible x values into usually equal sized
and adjacent intervals or bins.

We start now with a practical Python program. We create a histogram with random numbers:

import matplotlib.pyplot as plt
import numpy as np
gaussian_numbers = np.random.normal(size=10000)
gaussian_numbers

plt.hist(gaussian_numbers)
plt.title("Gaussian Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()

Output: array([-0.80404388, -2.77483865, -2.26510843, ..., -0.698508
2 ,

1.21066701,  0.4700107 ])
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We have seen that the function hist (actually matplotlib.pyplot.hist) computes the histogram values and plots
the graph. It also returns a tuple of three objects (n, bins, patches):

n, bins, patches = plt.hist(gaussian_numbers)

n[i] contains the number of values of gaussian numbers that lie within the interval with the boundaries bins [i]
and bins [i + 1]:

print("n: ", n, sum(n))

So n is an array of frequencies. The last return value of hist is a list of patches, which corresponds to the
rectangles with their properties:

n:  [   5.   61.  385. 1254. 2728. 3012. 1839.  585.  115.   16.]
10000.0
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print("patches: ", patches)
for i in range(10):

print(patches[i])

Let's take a closer look at the return values. To create the histogram array gaussian_numbers are divided into
equal intervals, i.e. the "bins". The interval limits calculated by hist are obtained in the second component of
the return tuple. In our example, they are denoted by the variable bins:

n, bins, patches = plt.hist(gaussian_numbers)
print("n: ", n, sum(n))
print("bins: ", bins)
for i in range(len(bins)-1):

print(bins[i+1] -bins[i])
print("patches: ", patches)
print(patches[1])
print(patches[2])

patches:  <BarContainer object of 10 artists>
Rectangle(xy=(-4.08653, 0), width=0.79308, height=5, angle=0)
Rectangle(xy=(-3.29345, 0), width=0.79308, height=61, angle=0)
Rectangle(xy=(-2.50037, 0), width=0.79308, height=385, angle=0)
Rectangle(xy=(-1.70729, 0), width=0.79308, height=1254, angle=0)
Rectangle(xy=(-0.914206, 0), width=0.79308, height=2728, angle=0)
Rectangle(xy=(-0.121126, 0), width=0.79308, height=3012, angle=0)
Rectangle(xy=(0.671954, 0), width=0.79308, height=1839, angle=0)
Rectangle(xy=(1.46503, 0), width=0.79308, height=585, angle=0)
Rectangle(xy=(2.25811, 0), width=0.79308, height=115, angle=0)
Rectangle(xy=(3.05119, 0), width=0.79308, height=16, angle=0)
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Let's increase the number of bins. 10 bins is not a lot, if you imagine, that we have 10,000 random values. To
do so, we set the keyword parameter bins to 100:

plt.hist(gaussian_numbers, bins=100)
plt.show()

n:  [   5.   61.  385. 1254. 2728. 3012. 1839.  585.  115.   16.]
10000.0
bins:  [-4.08652622 -3.29344612 -2.50036601 -1.7072859  -0.914205
8  -0.12112569

0.67195442  1.46503452  2.25811463  3.05119474  3.84427484]
0.7930801067329991
0.7930801067329987
0.7930801067329987
0.7930801067329991
0.7930801067329991
0.7930801067329982
0.7930801067329991
0.7930801067329991
0.7930801067329991
0.7930801067329982
patches:  <BarContainer object of 10 artists>
Rectangle(xy=(-3.29345, 0), width=0.79308, height=61, angle=0)
Rectangle(xy=(-2.50037, 0), width=0.79308, height=385, angle=0)

MATPLOTLIB TUTORIAL: HISTOGRAMS AND BAR PLOTS 251



Indem wir den Parameter orientation auf vertical setzen, können wir das Histogramm auch seitwärts ausgeben:

plt.hist(gaussian_numbers,
bins=100,
orientation="horizontal")

plt.show()

Another important keyword parameter of hist is density, which replaces the deprecated normed parameter. If
set to true, the first component - that is, the frequencies - of the return tuple is normalized to form a probability
density, i. the area (or the integral) under the histogram makes the sum 1

n, bins, patches = plt.hist(gaussian_numbers,
bins=100,
density=True)

plt.show()
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print("Area below the integral: ", np.sum(n * np.diff(bins)))

If both the parameters 'density' and 'stacked' are set to 'True', the sum of the histograms is normalized to 1.
With the parameters edgecolor and color we can define the line color and the color of the surfaces:

plt.hist(gaussian_numbers,
bins=100,
density=True,
stacked=True,
edgecolor="#6A9662",
color="#DDFFDD")

plt.show()

Okay, you want to see the data depicted as a plot of cumulative values? We can plot it as a cumulative

Area below the integral:  1.0
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distribution function by setting the parameter 'cumulative'.

plt.hist(gaussian_numbers,
bins=100,
stacked=True,
cumulative=True)

plt.show()

BAR PLOTS

Now we come to one of the most commonly used chart types, well known even among non-scientists. A bar
chart is composed of rectangles that are perpendicular to the x-axis and that rise up like columns. The width of
the rectangles has no mathematical meaning.

bars = plt.bar([1, 2, 3, 4], [1, 4, 9, 16])
bars[0].set_color('green')
plt.show()
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f=plt.figure()
ax=f.add_subplot(1,1,1)
ax.bar([1,2,3,4], [1,4,9,16])
children = ax.get_children()
children[3].set_color('g')

import matplotlib.pyplot as plt
import numpy as np
years = [str(year) for year in range(2010, 2021)]
visitors = (1241, 50927, 162242, 222093, 665004,

2071987, 2460407, 3799215, 5399000, 5475016, 6003672)
index = np.arange(len(years))
bar_width = 0.9
plt.bar(index, visitors, bar_width, color="green")
plt.xticks(index, years) # labels get centered
plt.show()
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BARPLOTS WITH CUSTOMIZED TICKS
from matplotlib.ticker import FuncFormatter
import matplotlib.pyplot as plt
import numpy as np
def millions(x, pos):

'The two args are the value and tick position'
#return '$%1.1fM' % (x * 1e-6)
return f'${x * 1e-6:1.1f}M'

formatter = FuncFormatter(millions)

years = ('US', 'EU', 'China', 'Japan',
'Germany', 'UK', 'France', 'India')

GDP = (20494050, 18750052, 13407398, 4971929,
4000386, 2828644, 2775252, 2716746)

fig, ax = plt.subplots()
ax.yaxis.set_major_formatter(formatter)
ax.bar(x=np.arange(len(GDP)), # The x coordinates of the bars.

height=GDP, # the height(s) of the vars
color="green",
align="center",
tick_label=years)

ax.set_ylabel('GDP in $')
ax.set_title('Largest Economies by nominal GDP in 2018')
plt.show()
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The file 'data/GDP.txt' contains a listing of countries, GDP and the population numbers of 2018 in the
following format:

1 United States 20,494,050 326,766,748
— European Union 18,750,052 511,522,671 2 China 13,407,398 1,415,045,928 3 Japan 4,971,929
127,185,332
4 Germany 4,000,386 82,293,457
5 United Kingdom 2,828,644 66,573,504 6 France 2,775,252 65,233,271
7 India 2,716,746 1,354,051,854 8 Italy 2,072,201 59,290,969 9 Brazil 1,868,184 210,867,954
10 Canada 1,711,387 36,953,765
11 Russia 1,630,659 143,964,709 12 South Korea 1,619,424 51,164,435 13 Spain 1,425,865 46,397,452
14 Australia 1,418,275 24,772,247
15 Mexico 1,223,359 130,759,074 16 Indonesia 1,022,454 266,794,980 17 Netherlands 912,899 17,084,459
18 Saudi Arabia 782,483 33,554,343 19 Turkey 766,428 81,916,871
20 Switzerland 703,750 8,544,034

Create a bar plot with the per capita nominal GDP.

import matplotlib.pyplot as plt
import numpy as np
land_GDP_per_capita = []
with open('data/GDP.txt') as fh:

for line in fh:
index, *land, gdp, population = line.split()
land = " ".join(land)
gdp = int(gdp.replace(',', ''))
population = int(population.replace(',', ''))
per_capita = int(round(gdp * 1000000 / population, 0))
land_GDP_per_capita.append((land, per_capita))
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land_GDP_per_capita.sort(key=lambda x: x[1], reverse=True)
countries, GDP_per_capita = zip(*land_GDP_per_capita)

fig = plt.figure(figsize=(6,5), dpi=200)
left, bottom, width, height = 0.1, 0.3, 0.8, 0.6
ax = fig.add_axes([left, bottom, width, height])

ax.bar(x=np.arange(len(GDP_per_capita)), # The x coordinates of th
e bars.

height=GDP_per_capita, # the height(s) of the vars
color="green", align="center",
tick_label=countries)

ax.set_ylabel('in thousands of $')
#ax.set_xticks(rotation='vertical')
ax.set_title('Largest Economies by nominal GDP in 2018')
plt.xticks(rotation=90)
plt.show()
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VERTICAL BAR CHARTS (LINE CHARTS)
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
# restore default parameters:
plt.rcdefaults()
fig, ax = plt.subplots()
personen = ('Michael', 'Dorothea', 'Robert', 'Bea', 'Uli')
y_pos = np.arange(len(personen))
cups = (15, 22, 24, 39, 12)
ax.barh(y_pos, cups, align='center',

color='green', ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(personen)
ax.invert_yaxis()
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ax.set_xlabel('Cups')
ax.set_title('Coffee Consumption')
plt.show()

GROUPED BAR CHARTS

So far we used in our bar plots for each categorical group one bar. I.e., for each country in the previous
example we had one bar for the "per capita GDP" of one year. We could think of a graph representing these
values for different years. This can be accomplished with grouped bar charts. A grouped bar chart contains
two or more bars for each categorical group. These bars are color-coded to represent a particular grouping. For
example, a business owner, running a production line with two main products might make a grouped bar chart
with different colored bars to represent each product. The horizontal axis would show the months of the year
and the vertical axis would show the revenue.

import matplotlib.pyplot as plt
import numpy as np
last_week_cups = (20, 35, 30, 35, 27)
this_week_cups = (25, 32, 34, 20, 25)
names = ['Mary', 'Paul', 'Billy', 'Franka', 'Stephan']
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fig = plt.figure(figsize=(6,5), dpi=200)
left, bottom, width, height = 0.1, 0.3, 0.8, 0.6
ax = fig.add_axes([left, bottom, width, height])

width = 0.35
ticks = np.arange(len(names))
ax.bar(ticks, last_week_cups, width, label='Last week')
ax.bar(ticks + width, this_week_cups, width, align="center",

label='This week')

ax.set_ylabel('Cups of Coffee')
ax.set_title('Coffee Consummation')
ax.set_xticks(ticks + width/2)
ax.set_xticklabels(names)

ax.legend(loc='best')
plt.show()
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EXERCISE

The file data/german_election_results.txt contains four election result of Germany.

Create a bar chart graph with data.

import matplotlib.pyplot as plt
import numpy as np
parties = ('CDU/CSU', 'SPD', 'FDP', 'Grüne', 'Die Linke', 'AfD')

election_results_per_year = {}
with open('data/german_election_results.txt') as fh:

fh.readline()
for line in fh:

year, *results = line.rsplit()
election_results_per_year[year] = [float(x) for x in resul

ts]

election_results_per_party = list(zip(*election_results_per_year.v
alues()))

fig = plt.figure(figsize=(6,5), dpi=200)
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])

years = list(election_results_per_year.keys())
width = 0.9 / len(parties)
ticks = np.arange(len(years))

for index, party in enumerate(parties):
ax.bar(ticks+index*width, election_results_per_party[index], w

idth, label=party)

ax.set_ylabel('Percentages of Votes')
ax.set_title('German Elections')
ax.set_xticks(ticks + 0.45)
ax.set_xticklabels(years)

ax.legend(loc='best')
plt.show()
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We change the previous code by adding the following dictionary:

colors = {'CDU/CSU': "black", 'SPD': "r", 'FDP': "y",
'Grüne': "green", 'Die Linke': "purple", 'AfD': "blue"}

We also change the creation of the bar code by assigning a color value to the parameter ‚color‘:

for index, party in enumerate(parties):
ax.bar(ticks+index*width,

election_results_per_party[index],
width,
label=party,
color=colors[parties[index]])
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Now the complete program with the customized colors:

import matplotlib.pyplot as plt
import numpy as np
parties = ('CDU/CSU', 'SPD', 'FDP', 'Grüne', 'Die Linke', 'AfD')
colors = {'CDU/CSU': "black", 'SPD': "r", 'FDP': "y",

'Grüne': "green", 'Die Linke': "purple", 'AfD': "blue"}

election_results_per_year = {}
with open('data/german_election_results.txt') as fh:

fh.readline()
for line in fh:

year, *results = line.rsplit()
election_results_per_year[year] = [float(x) for x in resul

ts]

election_results_per_party = list(zip(*election_results_per_year.v
alues()))

fig = plt.figure(figsize=(6,5), dpi=200)
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])

years = list(election_results_per_year.keys())
width = 0.9 / len(parties)
ticks = np.arange(len(years))

for index, party in enumerate(parties):
ax.bar(ticks+index*width,

election_results_per_party[index],
width,
label=party,
color=colors[parties[index]])

ax.set_ylabel('Percentages of Votes')
ax.set_title('German Elections')
ax.set_xticks(ticks + 0.45)
ax.set_xticklabels(years)

ax.legend(loc='best')
plt.show()
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STACKED BAR CHARS

As an alternative to grouped bar charts stacked bar charts can be used.

The stacked bar chart stacks bars that represent different groups on top of each other. The height of the
resulting bar shows the combined result or summation of the individual groups.

Stacked bar charts are great to depict the total and at the same time providing a view of how the single parts
are related to the sum.

Stacked bar charts are not suited for datasets where some groups have negative values. In such cases, grouped
bar charts are the better choice.

import matplotlib.pyplot as plt
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import numpy as np
coffee = np.array([5, 5, 7, 6, 7])
tea = np.array([1, 2, 0, 2, 0])
water = np.array([10, 12, 14, 12, 15])
names = ['Mary', 'Paul', 'Billy', 'Franka', 'Stephan']

fig = plt.figure(figsize=(6,5), dpi=200)
left, bottom, width, height = 0.2, 0.1, 0.7, 0.8
ax = fig.add_axes([left, bottom, width, height])

width = 0.35
ticks = np.arange(len(names))
ax.bar(ticks, tea, width, label='Coffee', bottom=water+coffee)
ax.bar(ticks, coffee, width, align="center", label='Tea',

bottom=water)
ax.bar(ticks, water, width, align="center", label='Water')
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Output: <BarContainer object of 5 artists>
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M A T P L O T L I B  T U T O R I A L :  C O N T O U R
P L O T S

CONTOUR PLOT

A contour line or isoline of a function of two variables is a
curve along which the function has a constant value.

It is a cross-section of the three-dimensional graph of the
function f(x, y) parallel to the x, y plane.

Contour lines are used e.g. in geography and meteorology.

In cartography, a contour line joins points of equal elevation
(height) above a given level, such as mean sea level.

We can also say in a more general way that a contour line of
a function with two variables is a curve which connects points with the same values.

CREATING A "MESHGRID"
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# the following line is only necessary if working with "ipython no
tebook"
%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np
n, m = 7, 7
start = -3

x_vals = np.arange(start, start+n, 1)
y_vals = np.arange(start, start+m, 1)
X, Y = np.meshgrid(x_vals, y_vals)

print(X)
print(Y)
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We can visulize our meshgridif we add the following code to our previous program:

fig, ax = plt.subplots()

ax.scatter(X, Y, color="green")
ax.set_title('Regular Grid, created by Meshgrid')
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()

import numpy as np
xlist = np.linspace(-3.0, 3.0, 3)
ylist = np.linspace(-3.0, 3.0, 4)

[[-3 -2 -1  0  1  2  3]
[-3 -2 -1  0  1  2  3]
[-3 -2 -1  0  1  2  3]
[-3 -2 -1  0  1  2  3]
[-3 -2 -1  0  1  2  3]
[-3 -2 -1  0  1  2  3]
[-3 -2 -1  0  1  2  3]]

[[-3 -3 -3 -3 -3 -3 -3]
[-2 -2 -2 -2 -2 -2 -2]
[-1 -1 -1 -1 -1 -1 -1]
[ 0  0  0  0  0  0  0]
[ 1  1  1  1  1  1  1]
[ 2  2  2  2  2  2  2]
[ 3  3  3  3  3  3  3]]
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X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(X**2 + Y**2)
print(Z)

CALCULATION OF THE VALUES

import numpy as np
xlist = np.linspace(-3.0, 3.0, 3)
ylist = np.linspace(-3.0, 3.0, 4)
X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(X**2 + Y**2)
print(Z)

[[4.24264069 3.         4.24264069]
[3.16227766 1.         3.16227766]
[3.16227766 1.         3.16227766]
[4.24264069 3.         4.24264069]]
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fig = plt.figure(figsize=(6,5))
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])

Z = np.sqrt(X**2 + Y**2)
cp = ax.contour(X, Y, Z)
ax.clabel(cp, inline=True,

fontsize=10)
ax.set_title('Contour Plot')
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
plt.show()

CHANGING THE COLOURS AND THE LINE STYLE

import matplotlib.pyplot as plt

[[4.24264069 3.         4.24264069]
[3.16227766 1.         3.16227766]
[3.16227766 1.         3.16227766]
[4.24264069 3.         4.24264069]]
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plt.figure()
cp = plt.contour(X, Y, Z, colors='black', linestyles='dashed')
plt.clabel(cp, inline=True,

fontsize=10)
plt.title('Contour Plot')
plt.xlabel('x (cm)')
plt.ylabel('y (cm)')
plt.show()

FILLED CONTOURS

import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(6,5))
left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
ax = fig.add_axes([left, bottom, width, height])

start, stop, n_values = -8, 8, 800

x_vals = np.linspace(start, stop, n_values)
y_vals = np.linspace(start, stop, n_values)
X, Y = np.meshgrid(x_vals, y_vals)
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Z = np.sqrt(X**2 + Y**2)

cp = plt.contourf(X, Y, Z)
plt.colorbar(cp)

ax.set_title('Contour Plot')
ax.set_xlabel('x (cm)')
ax.set_ylabel('y (cm)')
plt.show()

INDIVIDUAL COLOURS

import numpy as np
import matplotlib.pyplot as plt
xlist = np.linspace(-3.0, 3.0, 100)
ylist = np.linspace(-3.0, 3.0, 100)
X, Y = np.meshgrid(xlist, ylist)
Z = np.sqrt(X**2 + Y**2)

plt.figure()
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contour = plt.contour(X, Y, Z)
plt.clabel(contour, colors = 'k', fmt = '%2.1f', fontsize=12)
c = ('#ff0000', '#ffff00', '#0000FF', '0.6', 'c', 'm')
contour_filled = plt.contourf(X, Y, Z, colors=c)
plt.colorbar(contour_filled)

plt.title('Filled Contours Plot')
plt.xlabel('x (cm)')
plt.ylabel('y (cm)')
plt.savefig('contourplot_own_colours.png', dpi=300)
plt.show()

LEVELS

The levels were decided automatically by contour and contourf so far. They can be defined manually, by
providing a list of levels as a fourth parameter. Contour lines will be drawn for each value in the list, if we use
contour. For contourf, there will be filled colored regions between the values in the list.

In [ ]:

import numpy as np
import matplotlib.pyplot as plt
xlist = np.linspace(-3.0, 3.0, 100)
ylist = np.linspace(-3.0, 3.0, 100)
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X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(X ** 2 + Y ** 2 )
plt.figure()

levels = [0.0, 0.2, 0.5, 0.9, 1.5, 2.5, 3.5]
contour = plt.contour(X, Y, Z, levels, colors='k')
plt.clabel(contour, colors = 'k', fmt = '%2.1f', fontsize=12)
contour_filled = plt.contourf(X, Y, Z, levels)
plt.colorbar(contour_filled)

plt.title('Plot from level list')
plt.xlabel('x (cm)')
plt.ylabel('y (cm)')
plt.show()

The last example of this chapter will be a "lovely" contour plot:

In [ ]:

import matplotlib.pyplot as plt
import numpy as np
y, x = np.ogrid[-1:2:100j, -1:1:100j]
plt.contour(x.ravel(),

y.ravel(),
x**2 + (y-((x**2)**(1.0/3)))**2,
[1],
colors='red',)

plt.axis('equal')
plt.show()

In [ ]:
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I M A G E  P R O C E S S I N G

INTRODUCTION

It has never been easier to take a picture than it is
today. All you normally need is a cell phone. These
are the essentials to take and view a picture. Taking
photos is free if we don't include the cost of the
mobile phone, which is often bought for other
purposes anyway. A generation ago, amateur and real
artists needed specialized and often expensive
equipment, and the cost per image was far from free.

We take photos to preserve great moments of our life
in time. "Pickled memories" ready to be "opened" in
the future at will.

Similar to pickling, we need to use the right
preservatives. Of course, the mobile phone also
offers us a range of image processing software, but as
soon as we have to process a large amount of photos,
we need other tools. This is when programming and
Python come into play. Python and its modules such
as Numpy, Scipy, Matplotlib and other special
modules offer the optimal functionality to cope with
the flood of images.

In order to provide you with the necessary knowledge, this chapter of our Python tutorial deals with basic
image processing and manipulation. For this purpose we use the modules NumPy, Matplotlib and SciPy.

We start with the scipy package misc . The helpfile says that scipy.misc contains "various utilities that
don't have another home". For example, it also contains a few images, such as the following:

from scipy import misc
import matplotlib.pyplot as plt
ascent = misc.ascent()
plt.gray()
plt.imshow(ascent)
plt.show()
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Additionally to the image, we can see the axis with the ticks. This may be very interesting, if you need some
orientations about the size and the pixel position, but in most cases, you want to see the image without this
information. We can get rid of the ticks and the axis by adding the command plt.axis("off") :

from scipy import misc

ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.axis("off") # removes the axis and the ticks
plt.gray()
plt.imshow(ascent)
plt.show()

We can see that the type of this image is an integer array:
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ascent.dtype

We can also check the size of the image:

ascent.shape

The misc package contains an image of a racoon as well:

import scipy.misc
face = scipy.misc.face()
print(face.shape)
print(face.max)
print(face.dtype)
plt.axis("off")
plt.gray()
plt.imshow(face)
plt.show()

import matplotlib.pyplot as plt

Only png images are supported by matplotlib

Output: dtype('int64')

Output: (512, 512)

(768, 1024, 3)
<built-in method max of numpy.ndarray object at 0x7fa59c3e4710>
uint8
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img = plt.imread('frankfurt.png')
print(img[:3])

plt.axis("off")
imgplot = plt.imshow(img)

lum_img = img[:,:,1]

[[[0.4117647  0.5686275  0.8       ]
[0.40392157 0.56078434 0.7921569 ]
[0.40392157 0.5686275  0.79607844]
...
[0.48235294 0.62352943 0.81960785]
[0.47843137 0.627451   0.81960785]
[0.47843137 0.62352943 0.827451  ]]

[[0.40784314 0.5647059  0.79607844]
[0.40392157 0.56078434 0.7921569 ]
[0.40392157 0.5686275  0.79607844]
...
[0.48235294 0.62352943 0.81960785]
[0.47843137 0.627451   0.81960785]
[0.48235294 0.627451   0.83137256]]

[[0.40392157 0.5686275  0.79607844]
[0.40392157 0.5686275  0.79607844]
[0.40392157 0.5686275  0.79607844]
...
[0.48235294 0.62352943 0.81960785]
[0.48235294 0.62352943 0.81960785]
[0.4862745  0.627451   0.83137256]]]
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print(lum_img)

plt.axis("off")
imgplot = plt.imshow(lum_img)

TINT, SHADE AND TONE

Now, we will show how to tint an image. Tint is an expression from colour theory and an often used technique
by painters. Thinking about painters and not think about the Netherlands is hard to imagine. So we will use a
picture with Dutch windmills in our next example. (The image has been taken at Kinderdijk, a village in the
Netherlands, about 15 km east of Rotterdam and about 50 kilometres from Den Haag (The Hague). It's a
UNESCO World Heritage Site since 1997.)

windmills = plt.imread('windmills.png')

[[0.5686275  0.56078434 0.5686275  ... 0.62352943 0.627451   0.623
52943]
[0.5647059  0.56078434 0.5686275  ... 0.62352943 0.627451   0.627

451  ]
[0.5686275  0.5686275  0.5686275  ... 0.62352943 0.62352943 0.627

451  ]
...
[0.31764707 0.32941177 0.32941177 ... 0.30588236 0.3137255  0.317

64707]
[0.31764707 0.3137255  0.32941177 ... 0.3019608  0.32156864 0.337

2549 ]
[0.31764707 0.3019608  0.33333334 ... 0.30588236 0.32156864 0.333

33334]]
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plt.axis("off")
plt.imshow(windmills)

We want to tint the image now. This means we will "mix" our colours with white. This will increase the
lightness of our image. For this purpose, we write a Python function, which takes an image and a percentage
value as a parameter. Setting 'percentage' to 0 will not change the image, setting it to one means that the image
will be completely whitened:

import numpy as np
import matplotlib.pyplot as plt
def tint(imag, percent):

"""
imag: the image which will be shaded
percent: a value between 0 (image will remain unchanged

and 1 (image will completely white)
"""
tinted_imag = imag + (np.ones(imag.shape) - imag) * percent
return tinted_imag

windmills = plt.imread('windmills.png')

tinted_windmills = tint(windmills, 0.8)
plt.axis("off")
plt.imshow(tinted_windmills)

Output: <matplotlib.image.AxesImage at 0x7fa59c2479d0>
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A shade is the mixture of a color with black, which reduces lightness.

import numpy as np
import matplotlib.pyplot as plt

def shade(imag, percent):
"""
imag: the image which will be shaded
percent: a value between 0 (image will remain unchanged

and 1 (image will be blackened)
"""
tinted_imag = imag * (1 - percent)
return tinted_imag

windmills = plt.imread('windmills.png')

tinted_windmills = shade(windmills, 0.7)
plt.imshow(tinted_windmills)

Output: <matplotlib.image.AxesImage at 0x7fa59c30f350>
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def vertical_gradient_line(image, reverse=False):
"""
We create a horizontal gradient line with the shape (1, imag

e.shape[1], 3))
The values are incremented from 0 to 1, if reverse is False,
otherwise the values are decremented from 1 to 0.
"""
number_of_columns = image.shape[1]
if reverse:

C = np.linspace(1, 0, number_of_columns)
else:

C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C

horizontal_brush = vertical_gradient_line(windmills)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)

Output: <matplotlib.image.AxesImage at 0x7fa59c3b8050>
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We will tint the image now from right to left by setting the reverse parameter of our Python function to "True":

def vertical_gradient_line(image, reverse=False):
"""
We create a horizontal gradient line with the shape (1, imag

e.shape[1], 3))
The values are incremented from 0 to 1, if reverse is False,
otherwise the values are decremented from 1 to 0.
"""
number_of_columns = image.shape[1]
if reverse:

C = np.linspace(1, 0, number_of_columns)
else:

C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C

horizontal_brush = vertical_gradient_line(windmills, reverse=True)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)

Output: <matplotlib.image.AxesImage at 0x7fa59e769b50>
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def horizontal_gradient_line(image, reverse=False):
"""
We create a vertical gradient line with the shape (image.shap

e[0], 1, 3))
The values are incremented from 0 to 1, if reverse is False,
otherwise the values are decremented from 1 to 0.
"""
number_of_rows, number_of_columns = image.shape[:2]
C = np.linspace(1, 0, number_of_rows)
C = C[np.newaxis,:]
C = np.concatenate((C, C, C)).transpose()
C = C[:, np.newaxis]
return C

vertical_brush = horizontal_gradient_line(windmills)
tinted_windmills = windmills
plt.imshow(tinted_windmills)

Output: <matplotlib.image.AxesImage at 0x7fa59cc89250>
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A tone is produced either by the mixture of a color with gray, or by both tinting and shading.

charlie = plt.imread('Chaplin.png')
plt.gray()
print(charlie)
plt.imshow(charlie)

Output: <matplotlib.image.AxesImage at 0x7fa59c227dd0>
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colored = np.dstack((charlie*0.1, charlie*1, charlie*0.5))

plt.imshow(colored)

[[0.16470589 0.16862746 0.1764706  ... 0.         0.
0.        ]
[0.16078432 0.16078432 0.16470589 ... 0.         0.

0.        ]
[0.15686275 0.15686275 0.16078432 ... 0.         0.

0.        ]
...
[0.         0.         0.         ... 0.         0.

0.        ]
[0.         0.         0.         ... 0.         0.

0.        ]
[0.         0.         0.         ... 0.         0.

0.        ]]
Output: <matplotlib.image.AxesImage at 0x7fa59c18f810>
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tinting gray scale images: http://scikit-image.org/docs/dev/auto_examples/plot_tinting_grayscale_images.html

We will use different colormaps in the following example. The colormaps can be found in
matplotlib.pyplot.cm.datad:

plt.cm.datad.keys()

Output: <matplotlib.image.AxesImage at 0x7fa59c0f9890>
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import numpy as np
import matplotlib.pyplot as plt
charlie = plt.imread('Chaplin.png')

#  colormaps plt.cm.datad
# cmaps = set(plt.cm.datad.keys())
cmaps = {'afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg',

'CMRmap', 'cool', 'copper', 'cubehelix', 'Greens'}

X = [(4, 3, 1, (1, 0, 0)),
(4, 3, 2, (0.5, 0.5, 0)),
(4, 3, 3, (0, 1, 0)),
(4, 3, 4, (0, 0.5, 0.5)),
(4, 3, (5, 8), (0, 0, 1)),
(4, 3, 6, (1, 1, 0)),

Output: dict_keys(['Blues', 'BrBG', 'BuGn', 'BuPu', 'CMRmap', 'GnB
u', 'Greens', 'Greys', 'OrRd', 'Oranges', 'PRGn', 'PiYG', 'Pu
Bu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'Rd
Pu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'Wistia', 'YlG
n', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'afmhot', 'autumn', 'binar
y', 'bone', 'brg', 'bwr', 'cool', 'coolwarm', 'copper', 'cube
helix', 'flag', 'gist_earth', 'gist_gray', 'gist_heat', 'gis
t_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'gnuplo
t', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'nipy_spectra
l', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'sprin
g', 'summer', 'terrain', 'winter', 'Accent', 'Dark2', 'Paire
d', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 't
ab20', 'tab20b', 'tab20c', 'Blues_r', 'BrBG_r', 'BuGn_r', 'Bu
Pu_r', 'CMRmap_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'OrR
d_r', 'Oranges_r', 'PRGn_r', 'PiYG_r', 'PuBu_r', 'PuBuGn_r',
'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdP
u_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'Wisti
a_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'afmho
t_r', 'autumn_r', 'binary_r', 'bone_r', 'brg_r', 'bwr_r', 'co
ol_r', 'coolwarm_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gi
st_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gi
st_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'gnuplot_r', 'g
nuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'nipy_spectr
al_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismi
c_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'Accen
t_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set
1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r',
'tab20c_r'])
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(4, 3, 7, (0.5, 1, 0) ),
(4, 3, 9, (0, 0.5, 0.5)),
(4, 3, 10, (0, 0.5, 1)),
(4, 3, 11, (0, 1, 1)),
(4, 3, 12, (0.5, 1, 1))]

fig = plt.figure(figsize=(6, 5))

#fig.subplots_adjust(bottom=0, left=0, top = 0.975, right=1)
for nrows, ncols, plot_number, factor in X:

sub = fig.add_subplot(nrows, ncols, plot_number)
sub.set_xticks([])

sub.imshow(charlie*0.0002, cmap=cmaps.pop())
sub.set_yticks([])
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I M A G E  P R O C E S S I N G  T E C H N I Q U E S

INTRODUCTION

As you may have noticed, each of our pages in our various
tutorials are introduced by eye candy pictures, which have
created with great care to enrich the content. One of those
images has been the raison d'être of this chapter. We want to
demonstrate how we created the picture for our chapter on
Decorators. The idea was to play with decorators in "real
life", small icons with images of small workers painting a
room and on the other hand blending this with the "at" sign,
the Python symbol for decorator. It is also a good example
of how to create a watermark.

We will demonstrate in this chapter the whole process chain
of how we created this image. The picture on the right side
of the current page has also been created the same way but
uses a director's chair on a small painters background as a
watermark instead of the at sign.

At first, we write a function "imag_tile" for tiling images
both in horizontal and in vertical direction. We will use this
to create the background of our image.

Then we show how to cut out with slicing a cutout or an
excerpt of an image. We will use the shade function, which
we introduced in our previous chapter on image processing, to shade our image.

Finally, we will use the original image, the shaded image, plus an image with a binary at sign with the
conditional numpy where function to create the final image. The final image contains the at sign as a
watermark, cut out from the shaded image.

TILING AN IMAGE

The function imag_tile, which we are going to design, can be best explained with the following diagram:
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The function imag_tile

imag_tile(img, n, m)

creates a tiled image by appending an image "img" m times in horizontal direction. After this we append the
strip image consisting of m img images n times in vertical direction.

In the following code, we use a picture of painting decorators as the tile image:

%matplotlib inline

import matplotlib.pyplot as plt
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import matplotlib.image as mpimg
import numpy as np
def imag_tile(img, n, m=1):

"""
The image "img" will be repeated n times in
vertical and m times in horizontal direction.
"""

if n == 1:
tiled_img = img

else:
lst_imgs = []
for i in range(n):

lst_imgs.append(img)
tiled_img = np.concatenate(lst_imgs, axis=1 )

if m > 1:
lst_imgs = []
for i in range(m):

lst_imgs.append(tiled_img)
tiled_img = np.concatenate(lst_imgs, axis=0 )

return tiled_img

basic_pattern = mpimg.imread('decorators_b2.png')

decorators_img = imag_tile(basic_pattern, 3, 3)

plt.axis("off")
plt.imshow(decorators_img)
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An image is a 3-dimensional numpy ndarray.

type(basic_pattern)

The first three rows of our image basic_pattern look like this:

basic_pattern[:3]

Output: <matplotlib.image.AxesImage at 0x7f0c1a6ff390>

Output: numpy.ndarray
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The innermost lists of our image contain the pixels. We have three values corresponding the the R, G, and B
values, this means that we have a 24-bit RGB PNG image, eight bits for each of R, G, B.

PNG images might also consist of 32-bit images (RGBA). The fourth value "A" will be used for transparancy,
single channel grayscale.

It's easy to access indivual pixels by indexing, e.g. the pixel in row 100 and column 20:

basic_pattern[100, 28]

As we have seen, the pixels are float (float32) values between 0 and 1. Matplotlib plotting can handle both
float32 and uint8 for PNG images. For all other formats it will be only uint8.

Output: array([[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]],

[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]],

[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
...,
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]], dtype=float32)

Output: array([0.9019608, 0.8901961, 0.8627451], dtype=float32)
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CROP IMAGES

We can also crop subimages with the slicing function. We crop the image from (90, 50), i.e. row 90 and
column 50, to (50, 120) in the following example:

cropped = basic_pattern[90:150, 50:120]
plt.axis("off")
plt.imshow(cropped)

We will need this technique in the following.

We will load the image of an at sign in the following script:

We can use the slicing function to crop parts of an image. We will use this to make sure that both images have
the same size.

at_img=mpimg.imread('at_sign.png')

# at_img and decorators_img have to be of equal size:
d_shape = decorators_img.shape
at_shape = at_img.shape
height, width, colours = [min(x) for x in zip(*(d_shape, at_shap
e))]
at_img = at_img[0:height, 0:width]

Output: <matplotlib.image.AxesImage at 0x7f0c18e64950>
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SHADE AN IMAGE

We define a function "shade" in the following script. "shade" takes two parameters. The first one "imag" is the
image, which will be shaded and the second one is the shading factor. It can be a value between 0 and 1. If the
factor is set to 0, imag will remain unchanged. If set to one, the image will be completetely blackened.

def shade(imag, percent):
"""
imag: the image which will be shaded
percent: a value between 0 (image will remain unchanged

and 1 (image will be blackened)
"""
tinted_imag = imag * (1 - percent)
return tinted_imag

tinted_decorator_img = shade(decorators_img, 0.5)
plt.imshow(tinted_decorator_img)
print(tinted_decorator_img[:3])
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[[[0.5 0.5 0.5]
[0.5 0.5 0.5]
[0.5 0.5 0.5]
...
[0.5 0.5 0.5]
[0.5 0.5 0.5]
[0.5 0.5 0.5]]

[[0.5 0.5 0.5]
[0.5 0.5 0.5]
[0.5 0.5 0.5]
...
[0.5 0.5 0.5]
[0.5 0.5 0.5]
[0.5 0.5 0.5]]

[[0.5 0.5 0.5]
[0.5 0.5 0.5]
[0.5 0.5 0.5]
...
[0.5 0.5 0.5]
[0.5 0.5 0.5]
[0.5 0.5 0.5]]]
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BLEND IMAGES

FIRST EXAMPLE

We have everything together now to create the blended image. Our at sign picture consists of black and white
pixels. The blended image is constructed like this: Let p=(n, m) be an arbitrary pixel in the n-th row and m-th
column of the image at_image. If the value of this pixel is not black or dark gray, we will use the pixel at
position (n, m) from the picture decorators_img, otherwise, we will use the corresponding pixel from
tinted_decorator_img. The where function of numpy is ideal for this task:

print(at_img.shape,
decorators_img.shape,
tinted_decorator_img.shape)

#basic_pattern = mpimg.imread('decorators2.png')
img2 = np.where(at_img > [0.1, 0.1, 0.1],

decorators_img,
tinted_decorator_img)

plt.axis("off")
plt.imshow(img2)

All there is left to do is save the newly created image:

mpimg.imsave('decorators_with_at.png', img2)

(1077, 771, 3) (1077, 771, 3) (1077, 771, 3)
Output: <matplotlib.image.AxesImage at 0x7f0c18ce3a10>
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SECOND EXAMPLE

We want to use now a different image as a "watermark". Instead of the at sign, we want to use now a director's
chair. We will create the image from the top of this page.

images = [mpimg.imread(fname) for fname in ["director_chair.png",
"the_sea.png", "the_sky.png"]]
director_chair, sea, sky = images

plt.axis("off")
plt.imshow(sea)

plt.axis("off")
plt.imshow(director_chair)

Output: <matplotlib.image.AxesImage at 0x7f0c18cc4450>
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In the following, we blend together the images director_chair, decorators_img and sea by using where of
numpy once more:

#sea2 = mpimg.imread('the_sea2.png')
img = np.where(director_chair > [0.9, 0.9, 0.9],

decorators_img,
sea)

plt.axis("off")
plt.imshow(img)
mpimg.imsave('decorators_with_chair.png', img)

We could have used "Image.open" from PIL instead of mpimg.imread from matplotlib to read in the pictures.
There is a crucial difference or a potential "problem" between these two ways: The image we get from imread
has values between 0 and 1, whereas Image.open consists of values between 0 and 255. So we might have to
divide all the pixels by 255, if we have to work with an image read in by mpimg.imread:

Output: <matplotlib.image.AxesImage at 0x7f0c18423850>
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from PIL import Image

img = Image.open("director_chair.jpg")
img = img.resize((at_img.shape[1], at_img.shape[0]))
img = np.asarray(img)

plt.axis("off")
plt.imshow(img)

print(img[100, 129])

# PIL: Pixel are within range 0 and 255
# mpimg: range 0 bis 1

img = np.asarray(img, np.float)
img = img / 255

print(img[100, 129])

I n t r o d u c t i o n
i n t o  P a n d a s

[27 27 27]

[0.10588235 0.10588235 0.10588235]
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The pandas we are writing about in this chapter have
nothing to do with the cute panda bears. Endearing bears
are not what our visitors expect in a Python tutorial.
Pandas is the name for a Python module, which is
rounding up the capabilities of Numpy, Scipy and
Matplotlab. The word pandas is an acronym which is
derived from "Python and data analysis" and "panel data".

There is often some confusion about whether Pandas is an
alternative to Numpy, SciPy and Matplotlib. The truth is
that it is built on top of Numpy. This means that Numpy is
required by pandas. Scipy and Matplotlib on the other
hand are not required by pandas but they are extremely
useful. That's why the Pandas project lists them as
"optional dependency".

Pandas is a software library written for the Python programming language. It is used for data manipulation and
analysis. It provides special data structures and operations for the manipulation of numerical tables and time
series. Pandas is free software released under the three-clause BSD license.
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D A T A  S T R U C T U R E S

We will start with the following two important data structures of Pandas:

• Series and
• DataFrame

SERIES

A Series is a one-dimensional labelled array-like object. It is capable of holding any data type, e.g. integers,
floats, strings, Python objects, and so on. It can be seen as a data structure with two arrays: one functioning as
the index, i.e. the labels, and the other one contains the actual data.

We define a simple Series object in the following example by instantiating a Pandas Series object with a list.
We will later see that we can use other data objects for example Numpy arrays and dictionaries as well to
instantiate a Series object.

import pandas as pd
S = pd.Series([11, 28, 72, 3, 5, 8])
S

We haven't defined an index in our example, but we see two columns in our output: The right column contains
our data, whereas the left column contains the index. Pandas created a default index starting with 0 going to 5,
which is the length of the data minus 1.

We can directly access the index and the values of our Series S:

print(S.index)
print(S.values)

If we compare this to creating an array in numpy, we will find lots of similarities:

Output: 0    11
1    28
2    72
3     3
4     5
5     8
dtype: int64

RangeIndex(start=0, stop=6, step=1)
[11 28 72  3  5  8]
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import numpy as np
X = np.array([11, 28, 72, 3, 5, 8])
print(X)
print(S.values)
# both are the same type:
print(type(S.values), type(X))

So far our Series have not been very different to ndarrays of Numpy. This changes, as soon as we start
defining Series objects with individual indices:

fruits = ['apples', 'oranges', 'cherries', 'pears']
quantities = [20, 33, 52, 10]
S = pd.Series(quantities, index=fruits)
S

A big advantage to NumPy arrays is obvious from the previous example: We can use arbitrary indices.

If we add two series with the same indices, we get a new series with the same index and the correponding
values will be added:

fruits = ['apples', 'oranges', 'cherries', 'pears']

S = pd.Series([20, 33, 52, 10], index=fruits)
S2 = pd.Series([17, 13, 31, 32], index=fruits)
print(S + S2)
print("sum of S: ", sum(S))

The indices do not have to be the same for the Series addition. The index will be the "union" of both indices. If

[11 28 72  3  5  8]
[11 28 72  3  5  8]
<class 'numpy.ndarray'> <class 'numpy.ndarray'>

Output: apples      20
oranges     33
cherries    52
pears       10
dtype: int64

apples      37
oranges     46
cherries    83
pears       42
dtype: int64
sum of S:  115
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an index doesn't occur in both Series, the value for this Series will be NaN:

fruits = ['peaches', 'oranges', 'cherries', 'pears']
fruits2 = ['raspberries', 'oranges', 'cherries', 'pears']

S = pd.Series([20, 33, 52, 10], index=fruits)
S2 = pd.Series([17, 13, 31, 32], index=fruits2)
print(S + S2)

In principle, the indices can be completely different, as in the following example. We have two indices. One is
the Turkish translation of the English fruit names:

fruits = ['apples', 'oranges', 'cherries', 'pears']

fruits_tr = ['elma', 'portakal', 'kiraz', 'armut']

S = pd.Series([20, 33, 52, 10], index=fruits)
S2 = pd.Series([17, 13, 31, 32], index=fruits_tr)
print(S + S2)

INDEXING

It's possible to access single values of a Series.

print(S['apples'])

cherries       83.0
oranges        46.0
peaches         NaN
pears          42.0
raspberries     NaN
dtype: float64

apples     NaN
armut      NaN
cherries   NaN
elma       NaN
kiraz      NaN
oranges    NaN
pears      NaN
portakal   NaN
dtype: float64

20
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This lookes like accessing the values of dictionaries through keys.

However, Series objects can also be accessed by multiple indexes at the same time. This can be done by
packing the indexes into a list. This type of access returns a Pandas Series again:

print(S[['apples', 'oranges', 'cherries']])

Similar to Numpy we can use scalar operations or mathematical functions on a series:

import numpy as np
print((S + 3) * 4)
print("======================")
print(np.sin(S))

PANDAS.SERIES.APPLY

Series.apply(func, convert_dtype=True, args=(), **kwds)

The function "func" will be applied to the Series and it returns either a Series or a DataFrame, depending on
"func".

Parameter Meaning

func
a function, which can be a NumPy function that will be applied to the entire Series or a Python function that will

be applied to every single value of the series

apples      20
oranges     33
cherries    52
dtype: int64

apples       92
oranges     144
cherries    220
pears        52
dtype: int64
======================
apples      0.912945
oranges     0.999912
cherries    0.986628
pears      -0.544021
dtype: float64
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Parameter Meaning

convert_dtype
A boolean value. If it is set to True (default), apply will try to find better dtype for elementwise function results.

If False, leave as dtype=object

args Positional arguments which will be passed to the function "func" additionally to the values from the series.

**kwds Additional keyword arguments will be passed as keywords to the function

Example:

S.apply(np.log)

We can also use Python lambda functions. Let's assume, we have the following task. The test the amount of
fruit for every kind. If there are less than 50 available, we will augment the stock by 10:

S.apply(lambda x: x if x > 50 else x+10 )

FILTERING WITH A BOOLEAN ARRAY

Similar to numpy arrays, we can filter Pandas Series with a Boolean array:

S[S>30]

A series can be seen as an ordered Python dictionary with a fixed length.

"apples" in S

Output: apples      2.995732
oranges     3.496508
cherries    3.951244
pears       2.302585
dtype: float64

Output: apples      30
oranges     43
cherries    52
pears       20
dtype: int64

Output: oranges     33
cherries    52
dtype: int64
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CREATING SERIES OBJECTS FROM DICTIONARIES

We can even use a dictionary to create a Series object. The resulting Series contains the dict's keys as the
indices and the values as the values.

cities = {"London": 8615246,
"Berlin": 3562166,
"Madrid": 3165235,
"Rome": 2874038,
"Paris": 2273305,
"Vienna": 1805681,
"Bucharest": 1803425,
"Hamburg": 1760433,
"Budapest": 1754000,
"Warsaw": 1740119,
"Barcelona": 1602386,
"Munich": 1493900,
"Milan": 1350680}

city_series = pd.Series(cities)
print(city_series)

Output: True

London       8615246
Berlin       3562166
Madrid       3165235
Rome         2874038
Paris        2273305
Vienna       1805681
Bucharest    1803425
Hamburg      1760433
Budapest     1754000
Warsaw       1740119
Barcelona    1602386
Munich       1493900
Milan        1350680
dtype: int64
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NAN - MISSING DATA

One problem in dealing with data analysis
tasks consists in missing data. Pandas
makes it as easy as possible to work with
missing data.

If we look once more at our previous
example, we can see that the index of our
series is the same as the keys of the
dictionary we used to create the
cities_series. Now, we want to use an
index which is not overlapping with the
dictionary keys. We have already seen
that we can pass a list or a tuple to the
keyword argument 'index' to define the
index. In our next example, the list (or
tuple) passed to the keyword parameter
'index' will not be equal to the keys. This
means that some cities from the
dictionary will be missing and two cities
("Zurich" and "Stuttgart") don't occur in the dictionary.

my_cities = ["London", "Paris", "Zurich", "Berlin",
"Stuttgart", "Hamburg"]

my_city_series = pd.Series(cities,
index=my_cities)

my_city_series

Due to the Nan values the population values for the other cities are turned into floats. There is no missing data
in the following examples, so the values are int:

my_cities = ["London", "Paris", "Berlin", "Hamburg"]

my_city_series = pd.Series(cities,
index=my_cities)

my_city_series

Output: London       8615246.0
Paris        2273305.0
Zurich             NaN
Berlin       3562166.0
Stuttgart          NaN
Hamburg      1760433.0
dtype: float64

DATA STRUCTURES 311



THE METHODS ISNULL() AND NOTNULL()

We can see, that the cities, which are not included in the dictionary, get the value NaN assigned. NaN stands
for "not a number". It can also be seen as meaning "missing" in our example.

We can check for missing values with the methods isnull and notnull:

my_cities = ["London", "Paris", "Zurich", "Berlin",
"Stuttgart", "Hamburg"]

my_city_series = pd.Series(cities,
index=my_cities)

print(my_city_series.isnull())

print(my_city_series.notnull())

CONNECTION BETWEEN NAN AND NONE

We get also a NaN, if a value in the dictionary has a None:

d = {"a":23, "b":45, "c":None, "d":0}
S = pd.Series(d)
print(S)

Output: London     8615246
Paris      2273305
Berlin     3562166
Hamburg    1760433
dtype: int64

London       False
Paris        False
Zurich        True
Berlin       False
Stuttgart     True
Hamburg      False
dtype: bool

London        True
Paris         True
Zurich       False
Berlin        True
Stuttgart    False
Hamburg       True
dtype: bool
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pd.isnull(S)

pd.notnull(S)

FILTERING OUT MISSING DATA

It's possible to filter out missing data with the Series method dropna. It returns a Series which consists only of
non-null data:

print(my_city_series.dropna())

FILLING IN MISSING DATA

In many cases you don't want to filter out missing data, but you want to fill in appropriate data for the empty
gaps. A suitable method in many situations will be fillna:

print(my_city_series.fillna(0))

a    23.0
b    45.0
c     NaN
d     0.0
dtype: float64

Output: a    False
b    False
c     True
d    False
dtype: bool

Output: a     True
b     True
c    False
d     True
dtype: bool

London     8615246.0
Paris      2273305.0
Berlin     3562166.0
Hamburg    1760433.0
dtype: float64
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Okay, that's not what we call "fill in appropriate data for the empty gaps". If we call fillna with a dict, we can
provide the appropriate data, i.e. the population of Zurich and Stuttgart:

missing_cities = {"Stuttgart":597939, "Zurich":378884}
my_city_series.fillna(missing_cities)

We still have the problem that integer values - which means values which should be integers like number of
people - are converted to float as soon as we have NaN values. We can solve this problem now with the
method 'fillna':

cities = {"London": 8615246,
"Berlin": 3562166,
"Madrid": 3165235,
"Rome": 2874038,
"Paris": 2273305,
"Vienna": 1805681,
"Bucharest":1803425,
"Hamburg": 1760433,
"Budapest": 1754000,
"Warsaw": 1740119,
"Barcelona":1602386,
"Munich": 1493900,
"Milan": 1350680}

my_cities = ["London", "Paris", "Zurich", "Berlin",
"Stuttgart", "Hamburg"]

my_city_series = pd.Series(cities,

London       8615246.0
Paris        2273305.0
Zurich             0.0
Berlin       3562166.0
Stuttgart          0.0
Hamburg      1760433.0
dtype: float64

Output: London       8615246.0
Paris        2273305.0
Zurich        378884.0
Berlin       3562166.0
Stuttgart     597939.0
Hamburg      1760433.0
dtype: float64
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index=my_cities)
my_city_series = my_city_series.fillna(0).astype(int)
print(my_city_series)

DATAFRAME

The underlying idea of a DataFrame is based on
spreadsheets. We can see the data structure of a DataFrame
as tabular and spreadsheet-like. A DataFrame logically
corresponds to a "sheet" of an Excel document. A
DataFrame has both a row and a column index.

Like a spreadsheet or Excel sheet, a DataFrame object
contains an ordered collection of columns. Each column
consists of a unique data typye, but different columns can
have different types, e.g. the first column may consist of
integers, while the second one consists of boolean values
and so on.

There is a close connection between the DataFrames and
the Series of Pandas. A DataFrame can be seen as a
concatenation of Series, each Series having the same
index, i.e. the index of the DataFrame.

We will demonstrate this in the following example.

We define the following three Series:

import pandas as pd
years = range(2014, 2018)

shop1 = pd.Series([2409.14, 2941.01, 3496.83, 3119.55], index=year
s)
shop2 = pd.Series([1203.45, 3441.62, 3007.83, 3619.53], index=year
s)
shop3 = pd.Series([3412.12, 3491.16, 3457.19, 1963.10], index=year
s)

London       8615246
Paris        2273305
Zurich             0
Berlin       3562166
Stuttgart          0
Hamburg      1760433
dtype: int64
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What happens, if we concatenate these "shop" Series? Pandas provides a concat function for this purpose:

pd.concat([shop1, shop2, shop3])

This result is not what we have intended or expected. The reason is that concat used 0 as the default for the
axis parameter. Let's do it with "axis=1":

shops_df = pd.concat([shop1, shop2, shop3], axis=1)
shops_df

Let's do some fine sanding by giving names to the columns:

cities = ["Zürich", "Winterthur", "Freiburg"]
shops_df.columns = cities
print(shops_df)

# alternative way: give names to series:
shop1.name = "Zürich"

Output: 2014    2409.14
2015    2941.01
2016    3496.83
2017    3119.55
2014    1203.45
2015    3441.62
2016    3007.83
2017    3619.53
2014    3412.12
2015    3491.16
2016    3457.19
2017    1963.10
dtype: float64

Output:

0 1 2

2014 2409.14 1203.45 3412.12

2015 2941.01 3441.62 3491.16

2016 3496.83 3007.83 3457.19

2017 3119.55 3619.53 1963.10
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shop2.name = "Winterthur"
shop3.name = "Freiburg"

print("------")
shops_df2 = pd.concat([shop1, shop2, shop3], axis=1)
print(shops_df2)

This was nice, but what kind of data type is our result?

print(type(shops_df))

This means, we can arrange or concat Series into DataFrames!

DATAFRAMES FROM DICTIONARIES

A DataFrame has a row and column index; it's like a dict of Series with a common index.

cities = {"name": ["London", "Berlin", "Madrid", "Rome",
"Paris", "Vienna", "Bucharest", "Hamburg",
"Budapest", "Warsaw", "Barcelona",
"Munich", "Milan"],

"population": [8615246, 3562166, 3165235, 2874038,
2273305, 1805681, 1803425, 1760433,
1754000, 1740119, 1602386, 1493900,
1350680],

"country": ["England", "Germany", "Spain", "Italy",
"France", "Austria", "Romania",
"Germany", "Hungary", "Poland", "Spain",
"Germany", "Italy"]}

Zürich  Winterthur  Freiburg
2014  2409.14     1203.45   3412.12
2015  2941.01     3441.62   3491.16
2016  3496.83     3007.83   3457.19
2017  3119.55     3619.53   1963.10
------

Zürich  Winterthur  Freiburg
2014  2409.14     1203.45   3412.12
2015  2941.01     3441.62   3491.16
2016  3496.83     3007.83   3457.19
2017  3119.55     3619.53   1963.10

<class 'pandas.core.frame.DataFrame'>
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city_frame = pd.DataFrame(cities)
city_frame

RETRIEVING THE COLUMN NAMES

It's possible to get the names of the columns as a list:

city_frame.columns.values

Output:

name population country

0 London 8615246 England

1 Berlin 3562166 Germany

2 Madrid 3165235 Spain

3 Rome 2874038 Italy

4 Paris 2273305 France

5 Vienna 1805681 Austria

6 Bucharest 1803425 Romania

7 Hamburg 1760433 Germany

8 Budapest 1754000 Hungary

9 Warsaw 1740119 Poland

10 Barcelona 1602386 Spain

11 Munich 1493900 Germany

12 Milan 1350680 Italy

Output: array(['name', 'population', 'country'], dtype=object)
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CUSTOM INDEX

We can see that an index (0,1,2, ...) has been automatically assigned to the DataFrame. We can also assign a
custom index to the DataFrame object:

ordinals = ["first", "second", "third", "fourth",
"fifth", "sixth", "seventh", "eigth",
"ninth", "tenth", "eleventh", "twelvth",
"thirteenth"]

city_frame = pd.DataFrame(cities, index=ordinals)
city_frame

Output:

name population country

first London 8615246 England

second Berlin 3562166 Germany

third Madrid 3165235 Spain

fourth Rome 2874038 Italy

fifth Paris 2273305 France

sixth Vienna 1805681 Austria

seventh Bucharest 1803425 Romania

eigth Hamburg 1760433 Germany

ninth Budapest 1754000 Hungary

tenth Warsaw 1740119 Poland

eleventh Barcelona 1602386 Spain

twelvth Munich 1493900 Germany

thirteenth Milan 1350680 Italy
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REARRANGING THE ORDER OF COLUMNS

We can also define and rearrange the order of the columns at the time of creation of the DataFrame. This
makes also sure that we will have a defined ordering of our columns, if we create the DataFrame from a
dictionary. Dictionaries are not ordered, as you have seen in our chapter on Dictionaries in our Python tutorial,
so we cannot know in advance what the ordering of our columns will be:

city_frame = pd.DataFrame(cities,
columns=["name",

"country",
"population"])

city_frame
Output:

name country population

0 London England 8615246

1 Berlin Germany 3562166

2 Madrid Spain 3165235

3 Rome Italy 2874038

4 Paris France 2273305

5 Vienna Austria 1805681

6 Bucharest Romania 1803425

7 Hamburg Germany 1760433

8 Budapest Hungary 1754000

9 Warsaw Poland 1740119

10 Barcelona Spain 1602386

11 Munich Germany 1493900

12 Milan Italy 1350680
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We change both the column order and the ordering of the index with the function reindex with the
following code:

city_frame.reindex(index=[0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 1
1],

columns=['country', 'name', 'population'])

Now, we want to rename our columns. For this purpose, we will use the DataFrame method 'rename'. This
method supports two calling conventions

• (index=index_mapper, columns=columns_mapper, ...)
• (mapper, axis={'index', 'columns'}, ...)

We will rename the columns of our DataFrame into Romanian names in the following example. We set the

Output:

country name population

0 England London 8615246

2 Spain Madrid 3165235

4 France Paris 2273305

6 Romania Bucharest 1803425

8 Hungary Budapest 1754000

10 Spain Barcelona 1602386

12 Italy Milan 1350680

1 Germany Berlin 3562166

3 Italy Rome 2874038

5 Austria Vienna 1805681

7 Germany Hamburg 1760433

9 Poland Warsaw 1740119

11 Germany Munich 1493900
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parameter inplace to True so that our DataFrame will be changed instead of returning a new DataFrame, if
inplace is set to False, which is the default!

city_frame.rename(columns={"name":"Soyadı",
"country":"Ülke",
"population":"Nüfus"},

inplace=True)
city_frame

EXISTING COLUMN AS THE INDEX OF A DATAFRAME

We want to create a more useful index in the following example. We will use the country name as the index,
i.e. the list value associated to the key "country" of our cities dictionary:

Output:

Soyadı Ülke Nüfus

0 London England 8615246

1 Berlin Germany 3562166

2 Madrid Spain 3165235

3 Rome Italy 2874038

4 Paris France 2273305

5 Vienna Austria 1805681

6 Bucharest Romania 1803425

7 Hamburg Germany 1760433

8 Budapest Hungary 1754000

9 Warsaw Poland 1740119

10 Barcelona Spain 1602386

11 Munich Germany 1493900

12 Milan Italy 1350680
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city_frame = pd.DataFrame(cities,
columns=["name", "population"],
index=cities["country"])

city_frame

Alternatively, we can change an existing DataFrame. We can us the method set_index to turn a column into an
index. "set_index" does not work in-place, it returns a new data frame with the chosen column as the index:

city_frame = pd.DataFrame(cities)
city_frame2 = city_frame.set_index("country")
print(city_frame2)

Output:

name population

England London 8615246

Germany Berlin 3562166

Spain Madrid 3165235

Italy Rome 2874038

France Paris 2273305

Austria Vienna 1805681

Romania Bucharest 1803425

Germany Hamburg 1760433

Hungary Budapest 1754000

Poland Warsaw 1740119

Spain Barcelona 1602386

Germany Munich 1493900

Italy Milan 1350680
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We saw in the previous example that the set_index method returns a new DataFrame object and doesn't change
the original DataFrame. If we set the optional parameter "inplace" to True, the DataFrame will be changed in
place, i.e. no new object will be created:

city_frame = pd.DataFrame(cities)
city_frame.set_index("country", inplace=True)
print(city_frame)

ACCESSING ROWS VIA INDEX VALUES

So far we have accessed DataFrames via the columns. It is often necessary to select certain rows via the index
names. We will demonstrate now, how we can access rows from DataFrames via the locators 'loc' and 'iloc'.
We will not cover 'ix' because it is deprecated and will be removed in the future.

name  population
country
England     London     8615246
Germany     Berlin     3562166
Spain       Madrid     3165235
Italy         Rome     2874038
France       Paris     2273305
Austria     Vienna     1805681
Romania  Bucharest     1803425
Germany    Hamburg     1760433
Hungary   Budapest     1754000
Poland      Warsaw     1740119
Spain    Barcelona     1602386
Germany     Munich     1493900
Italy        Milan     1350680

name  population
country
England     London     8615246
Germany     Berlin     3562166
Spain       Madrid     3165235
Italy         Rome     2874038
France       Paris     2273305
Austria     Vienna     1805681
Romania  Bucharest     1803425
Germany    Hamburg     1760433
Hungary   Budapest     1754000
Poland      Warsaw     1740119
Spain    Barcelona     1602386
Germany     Munich     1493900
Italy        Milan     1350680
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We select all the German cities in the following example by using 'loc'. The result is a DataFrame:

city_frame = pd.DataFrame(cities,
columns=("name", "population"),
index=cities["country"])

print(city_frame.loc["Germany"])

It is also possible to simultaneously extracting rows by chosen more than on index labels. To do this we use a
list of indices:

print(city_frame.loc[["Germany", "France"]])

We will also need to select pandas DataFrame rows based on conditions, which are applied to column values.
We can use the operators '>', '=', '=', '<=', '!=' for this purpose. We select all cities with a population of more
than two million in the following example:

condition = city_frame.population>2000000
condition

name  population
Germany   Berlin     3562166
Germany  Hamburg     1760433
Germany   Munich     1493900

name  population
Germany   Berlin     3562166
Germany  Hamburg     1760433
Germany   Munich     1493900
France     Paris     2273305

Output: England     True
Germany     True
Spain       True
Italy       True
France      True
Austria    False
Romania    False
Germany    False
Hungary    False
Poland     False
Spain      False
Germany    False
Italy      False
Name: population, dtype: bool
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We can use this Boolean DataFrame condition with loc to finally create the selection:

print(city_frame.loc[condition])

It is also possible to logically combine more than one condition with & and | :

condition1 = (city_frame.population>1500000)
condition2 = (city_frame['name'].str.contains("m"))
print(city_frame.loc[condition1 & condition2])

We use a logical or | in the following example to see all cities of the Pandas DataFrame, where either the
city name contains the letter 'm' or the population number is greater than three million:

condition1 = (city_frame.population>3000000)
condition2 = (city_frame['name'].str.contains("m"))
print(city_frame.loc[condition1 | condition2])

ADDING ROWS TO A DATAFRAME

milan = ['Milan', 1399860]
city_frame.iloc[-1] = milan
city_frame.loc['Switzerland'] = ['Zurich', 415215]
city_frame

name  population
England  London     8615246
Germany  Berlin     3562166
Spain    Madrid     3165235
Italy      Rome     2874038
France    Paris     2273305

name  population
Italy       Rome     2874038
Germany  Hamburg     1760433

name  population
England   London     8615246
Germany   Berlin     3562166
Spain     Madrid     3165235
Italy       Rome     2874038
Germany  Hamburg     1760433
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ACCESSING ROWS BY POSITION

The iloc method of a Pandas DataFrame object can be used to select rows and columns by number, i.e. in
the order that they appear in the data frame. iloc allows selections of the rows, as if they were numbered
by integers 0 , 1 , 2 , ....

We demonstrate this in the following example:

df = city_frame.iloc[3]
print(df)

Output:

name population

England London 8615246

Germany Berlin 3562166

Spain Madrid 3165235

Italy Rome 2874038

France Paris 2273305

Austria Vienna 1805681

Romania Bucharest 1803425

Germany Hamburg 1760433

Hungary Budapest 1754000

Poland Warsaw 1740119

Spain Barcelona 1602386

Germany Munich 1493900

Italy Milan 1399860

Switzerland Zurich 415215
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To get a DataFrame with selected rows by numbers, we use a list of integers. We can see that we can change
the order of the rows and we are also able to select rows multiple times:

df = city_frame.iloc[[3, 2, 0, 5, 0]]
print(df)

SUM AND CUMULATIVE SUM

The DataFrame object of Pandas provides a method to sum both columns and rows. Before we will explain the
usage of the sum method, we will create a new DataFrame object on which we will apply our examples. We
will start by creating an empty DataFrame without columns but an index. We populate this DataFrame by
adding columns with random values:

years = range(2014, 2019)
cities = ["Zürich", "Freiburg", "München", "Konstanz", "Saarbrücke
n"]
shops = pd.DataFrame(index=years)
for city in cities:

shops.insert(loc=len(shops.columns),
column=city,
value=(np.random.uniform(0.7, 1, (5,)) * 1000).ro

und(2))

print(shops)

Let's apply sum to the DataFrame shops :

name             Rome
population    2874038
Name: Italy, dtype: object

name  population
Italy      Rome     2874038
Spain    Madrid     3165235
England  London     8615246
Austria  Vienna     1805681
England  London     8615246

Zürich  Freiburg  München  Konstanz  Saarbrücken
2014  872.51    838.22   961.17    934.99       796.42
2015  944.47    943.27   862.66    784.23       770.94
2016  963.22    859.97   818.13    965.38       995.74
2017  866.11    731.42   811.37    955.21       836.36
2018  790.95    837.39   941.92    735.93       837.23
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shops.sum()

We can see that it summed up all the columns of our DataFrame. What about calculating the sum of the rows?
We can do this by using the axis parameter of sum .

shops.sum(axis=1)

You only want to the the sums for the first, third and the last column and for all the years:

s = shops.iloc[:, [0, 2, -1]]
print(s)
print("and now the sum:")
print(s.sum())

Of course, you could have also have achieved it in the following way, if the column names are known:

shops[["Zürich", "München", "Saarbrücken"]].sum()

Output: Zürich         4504.85
Freiburg       4182.09
München        3999.67
Konstanz       4557.86
Saarbrücken    4608.05
dtype: float64

Output: 2014    4226.30
2015    4458.91
2016    4696.46
2017    4186.20
2018    4284.65
dtype: float64

Zürich  München  Saarbrücken
2014  780.38   952.88       854.93
2015  968.05   807.03       894.87
2016  990.00   803.41       991.15
2017  815.45   734.82       950.40
2018  950.97   701.53       916.70
and now the sum:
Zürich         4504.85
München        3999.67
Saarbrücken    4608.05
dtype: float64
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We can use "cumsum" to calculate the cumulative sum over the years:

x = shops.cumsum()
print(x)

Using the keyword parameter axis with the value 1, we can build the cumulative sum over the rows:

x = shops.cumsum(axis=1)
print(x)

ASSIGNING NEW VALUES TO COLUMNS

x is a Pandas Series. We can reassign the previously calculated cumulative sums to the population column:

city_frame["population"] = x
print(city_frame)

Output: Zürich         4504.85
München        3999.67
Saarbrücken    4608.05
dtype: float64

Zürich  Freiburg  München  Konstanz  Saarbrücken
2014   780.38    908.77   952.88    729.34       854.93
2015  1748.43   1719.42  1759.91   1707.65      1749.80
2016  2738.43   2698.64  2563.32   2640.33      2740.95
2017  3553.88   3424.87  3298.14   3599.63      3691.35
2018  4504.85   4182.09  3999.67   4557.86      4608.05

Zürich  Freiburg  München  Konstanz  Saarbrücken
2014  780.38   1689.15  2642.03   3371.37      4226.30
2015  968.05   1778.70  2585.73   3564.04      4458.91
2016  990.00   1969.22  2772.63   3705.31      4696.46
2017  815.45   1541.68  2276.50   3235.80      4186.20
2018  950.97   1708.19  2409.72   3367.95      4284.65
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Instead of replacing the values of the population column with the cumulative sum, we want to add the
cumulative population sum as a new culumn with the name "cum_population".

city_frame = pd.DataFrame(cities,
columns=["country",

"population",
"cum_population"],

index=cities["name"])

city_frame

name  population
England     London     8615246
Germany     Berlin    12177412
Spain       Madrid    15342647
Italy         Rome    18216685
France       Paris    20489990
Austria     Vienna    22295671
Romania  Bucharest    24099096
Germany    Hamburg    25859529
Hungary   Budapest    27613529
Poland      Warsaw    29353648
Spain    Barcelona    30956034
Germany     Munich    32449934
Italy        Milan    33800614
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We can see that the column "cum_population" is set to Nan, as we haven't provided any data for it.

We will assign now the cumulative sums to this column:

city_frame["cum_population"] = city_frame["population"].cumsum()
city_frame

Output:

country population cum_population

London England 8615246 NaN

Berlin Germany 3562166 NaN

Madrid Spain 3165235 NaN

Rome Italy 2874038 NaN

Paris France 2273305 NaN

Vienna Austria 1805681 NaN

Bucharest Romania 1803425 NaN

Hamburg Germany 1760433 NaN

Budapest Hungary 1754000 NaN

Warsaw Poland 1740119 NaN

Barcelona Spain 1602386 NaN

Munich Germany 1493900 NaN

Milan Italy 1350680 NaN
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We can also include a column name which is not contained in the dictionary, when we create the DataFrame
from the dictionary. In this case, all the values of this column will be set to NaN:

city_frame = pd.DataFrame(cities,
columns=["country",

"area",
"population"],

index=cities["name"])
print(city_frame)

Output:

country population cum_population

London England 8615246 8615246

Berlin Germany 3562166 12177412

Madrid Spain 3165235 15342647

Rome Italy 2874038 18216685

Paris France 2273305 20489990

Vienna Austria 1805681 22295671

Bucharest Romania 1803425 24099096

Hamburg Germany 1760433 25859529

Budapest Hungary 1754000 27613529

Warsaw Poland 1740119 29353648

Barcelona Spain 1602386 30956034

Munich Germany 1493900 32449934

Milan Italy 1350680 33800614
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ACCESSING THE COLUMNS OF A DATAFRAME

There are two ways to access a column of a DataFrame. The result is in both cases a Series:

# in a dictionary-like way:
print(city_frame["population"])

# as an attribute
print(city_frame.population)

country area  population
London     England  NaN     8615246
Berlin     Germany  NaN     3562166
Madrid       Spain  NaN     3165235
Rome         Italy  NaN     2874038
Paris       France  NaN     2273305
Vienna     Austria  NaN     1805681
Bucharest  Romania  NaN     1803425
Hamburg    Germany  NaN     1760433
Budapest   Hungary  NaN     1754000
Warsaw      Poland  NaN     1740119
Barcelona    Spain  NaN     1602386
Munich     Germany  NaN     1493900
Milan        Italy  NaN     1350680

London       8615246
Berlin       3562166
Madrid       3165235
Rome         2874038
Paris        2273305
Vienna       1805681
Bucharest    1803425
Hamburg      1760433
Budapest     1754000
Warsaw       1740119
Barcelona    1602386
Munich       1493900
Milan        1350680
Name: population, dtype: int64
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print(type(city_frame.population))

city_frame.population

From the previous example, we can see that we have not copied the population column. "p" is a view on the
data of city_frame.

ASSIGNING NEW VALUES TO A COLUMN

The column area is still not defined. We can set all elements of the column to the same value:

city_frame["area"] = 1572
print(city_frame)

London       8615246
Berlin       3562166
Madrid       3165235
Rome         2874038
Paris        2273305
Vienna       1805681
Bucharest    1803425
Hamburg      1760433
Budapest     1754000
Warsaw       1740119
Barcelona    1602386
Munich       1493900
Milan        1350680
Name: population, dtype: int64

<class 'pandas.core.series.Series'>

Output: London       8615246
Berlin       3562166
Madrid       3165235
Rome         2874038
Paris        2273305
Vienna       1805681
Bucharest    1803425
Hamburg      1760433
Budapest     1754000
Warsaw       1740119
Barcelona    1602386
Munich       1493900
Milan        1350680
Name: population, dtype: int64
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In this case, it will be definitely better to assign the exact area to the cities. The list with the area values needs
to have the same length as the number of rows in our DataFrame.

# area in square km:
area = [1572, 891.85, 605.77, 1285,

105.4, 414.6, 228, 755,
525.2, 517, 101.9, 310.4,
181.8]

# area could have been designed as a list, a Series, an array or
a scalar

city_frame["area"] = area
print(city_frame)

country  area  population
London     England  1572     8615246
Berlin     Germany  1572     3562166
Madrid       Spain  1572     3165235
Rome         Italy  1572     2874038
Paris       France  1572     2273305
Vienna     Austria  1572     1805681
Bucharest  Romania  1572     1803425
Hamburg    Germany  1572     1760433
Budapest   Hungary  1572     1754000
Warsaw      Poland  1572     1740119
Barcelona    Spain  1572     1602386
Munich     Germany  1572     1493900
Milan        Italy  1572     1350680

country     area  population
London     England  1572.00     8615246
Berlin     Germany   891.85     3562166
Madrid       Spain   605.77     3165235
Rome         Italy  1285.00     2874038
Paris       France   105.40     2273305
Vienna     Austria   414.60     1805681
Bucharest  Romania   228.00     1803425
Hamburg    Germany   755.00     1760433
Budapest   Hungary   525.20     1754000
Warsaw      Poland   517.00     1740119
Barcelona    Spain   101.90     1602386
Munich     Germany   310.40     1493900
Milan        Italy   181.80     1350680
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SORTING DATAFRAMES

Let's sort our DataFrame according to the city area:

city_frame = city_frame.sort_values(by="area", ascending=False)
print(city_frame)

Let's assume, we have only the areas of London, Hamburg and Milan. The areas are in a series with the correct
indices. We can assign this series as well:

city_frame = pd.DataFrame(cities,
columns=["country",

"area",
"population"],

index=cities["name"])

some_areas = pd.Series([1572, 755, 181.8],
index=['London', 'Hamburg', 'Milan'])

city_frame['area'] = some_areas
print(city_frame)

country     area  population
London     England  1572.00     8615246
Rome         Italy  1285.00     2874038
Berlin     Germany   891.85     3562166
Hamburg    Germany   755.00     1760433
Madrid       Spain   605.77     3165235
Budapest   Hungary   525.20     1754000
Warsaw      Poland   517.00     1740119
Vienna     Austria   414.60     1805681
Munich     Germany   310.40     1493900
Bucharest  Romania   228.00     1803425
Milan        Italy   181.80     1350680
Paris       France   105.40     2273305
Barcelona    Spain   101.90     1602386
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INSERTING NEW COLUMNS INTO EXISTING DATAFRAMES

In the previous example we have added the column area at creation time. Quite often it will be necessary to
add or insert columns into existing DataFrames. For this purpose the DataFrame class provides a method
"insert", which allows us to insert a column into a DataFrame at a specified location:

insert(self, loc, column, value, allow_duplicates=False)`
The parameters are specified as:

Parameter Meaning

loc int

This value should be within
the range 0 <= loc <= len(columns)

column the column name

value can be a list, a Series an array or a scalar

allow_duplicates

If allow_duplicates is False,
an Exception will be raised,

if column is already contained
in the DataFrame.

city_frame = pd.DataFrame(cities,
columns=["country",

"population"],
index=cities["name"])

country    area  population
London     England  1572.0     8615246
Berlin     Germany     NaN     3562166
Madrid       Spain     NaN     3165235
Rome         Italy     NaN     2874038
Paris       France     NaN     2273305
Vienna     Austria     NaN     1805681
Bucharest  Romania     NaN     1803425
Hamburg    Germany   755.0     1760433
Budapest   Hungary     NaN     1754000
Warsaw      Poland     NaN     1740119
Barcelona    Spain     NaN     1602386
Munich     Germany     NaN     1493900
Milan        Italy   181.8     1350680
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idx = 1
city_frame.insert(loc=idx, column='area', value=area)
city_frame

CREATING A DATAFRAME BY APPENDING ROWS
import pandas as pd
from numpy.random import randint

df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
for i in range(5):

df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))

Output:

country area population

London England 1572.00 8615246

Berlin Germany 891.85 3562166

Madrid Spain 605.77 3165235

Rome Italy 1285.00 2874038

Paris France 105.40 2273305

Vienna Austria 414.60 1805681

Bucharest Romania 228.00 1803425

Hamburg Germany 755.00 1760433

Budapest Hungary 525.20 1754000

Warsaw Poland 517.00 1740119

Barcelona Spain 101.90 1602386

Munich Germany 310.40 1493900

Milan Italy 181.80 1350680
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df

DATAFRAME FROM NESTED DICTIONARIES

A nested dictionary of dicts can be passed to a DataFrame as well. The indices of the outer dictionary are
taken as the the columns and the inner keys. i.e. the keys of the nested dictionaries, are used as the row
indices:

growth = {"Switzerland": {"2010": 3.0, "2011": 1.8, "2012": 1.1,
"2013": 1.9},

"Germany": {"2010": 4.1, "2011": 3.6, "2012":
0.4, "2013": 0.1},

"France": {"2010":2.0, "2011":2.1, "2012": 0.3, "201
3": 0.3},

"Greece": {"2010":-5.4, "2011":-8.9, "2012":-6.6, "201
3": -3.3},

"Italy": {"2010":1.7, "2011": 0.6, "2012":-2.3,
"2013":-1.9}

}
growth_frame = pd.DataFrame(growth)
growth_frame

Output:

lib qty1 qty2

0 name0 1 8

1 name1 5 6

2 name2 9 9

3 name3 8 8

4 name4 7 0
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You like to have the years in the columns and the countries in the rows? No problem, you can transpose the
data:

growth_frame.T

growth_frame = growth_frame.T

growth_frame2 = growth_frame.reindex(["Switzerland",
"Italy",
"Germany",
"Greece"])

print(growth_frame2)

Output:

Switzerland Germany France Greece Italy

2010 3.0 4.1 2.0 -5.4 1.7

2011 1.8 3.6 2.1 -8.9 0.6

2012 1.1 0.4 0.3 -6.6 -2.3

2013 1.9 0.1 0.3 -3.3 -1.9

Output:

2010 2011 2012 2013

Switzerland 3.0 1.8 1.1 1.9

Germany 4.1 3.6 0.4 0.1

France 2.0 2.1 0.3 0.3

Greece -5.4 -8.9 -6.6 -3.3

Italy 1.7 0.6 -2.3 -1.9

2010  2011  2012  2013
Switzerland   3.0   1.8   1.1   1.9
Italy         1.7   0.6  -2.3  -1.9
Germany       4.1   3.6   0.4   0.1
Greece       -5.4  -8.9  -6.6  -3.3
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FILLING A DATAFRAME WITH RANDOM VALUES:

import numpy as np
names = ['Frank', 'Eve', 'Stella', 'Guido', 'Lara']
index = ["January", "February", "March",

"April", "May", "June",
"July", "August", "September",
"October", "November", "December"]

df = pd.DataFrame((np.random.randn(12, 5)*1000).round(2),
columns=names,
index=index)

df
Output:

Frank Eve Stella Guido Lara

January -2452.01 -91.03 -122.31 -750.05 931.99

February -874.08 -189.72 628.49 -392.53 342.06

March -1222.37 -1125.60 -826.90 -107.74 -831.32

April 1333.69 1468.56 -1537.82 -743.23 624.10

May 802.27 -1444.17 84.38 -376.80 256.64

June -762.07 207.63 -476.06 -2068.54 -1614.25

July -1172.28 -2582.39 -351.16 -555.88 -21.40

August -468.52 -665.97 833.53 -1650.37 -426.07

September -788.57 408.96 -652.73 346.99 875.78

October 92.81 699.84 251.47 872.04 415.53

November 558.65 -1699.90 -949.95 212.92 -1874.80

December -646.58 -35.22 -1018.20 -644.35 776.56
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A C C E S S I N G  A N D  C H A N G I N G
V A L U E S  O F  D A T A F R A M E S

We have seen in the previous chapters of our tutorial many
ways to create Series and DataFrames. We also learned
how to access and replace complete columns. This chapter
of our Pandas and Python tutorial will show various ways
to access and change selectively values in Pandas
DataFrames and Series. We will show ways how to change
single value or values matching strings or regular
expressions.

For this purpose we will learn to know the methods loc ,
at and replace

We will work with the following DataFrame structure in
our examples:

import pandas as pd
first = ('Mike', 'Dorothee', 'To
m', 'Bill', 'Pete', 'Kate')
last = ('Meyer', 'Maier', 'Meyer', 'Mayer', 'Meyr', 'Mair')
job = ('data analyst', 'programmer', 'computer scientist',

'data scientist', 'accountant', 'psychiatrist')
language = ('Python', 'Perl', 'Java', 'Java', 'Cobol', 'Brainfuc
k')

df = pd.DataFrame(list(zip(last, job, language)),
columns =['last', 'job', 'language'],
index=first)

df
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CHANGING ONE VALUE IN DATAFRAME

Pandas provides two ways, i.e. loc and at , to access or change a single value of a DataFrame. We will
experiment with the height of Bill in the following Python code:

# accessing the job of Bill:
print(df.loc['Bill', 'job'])
# alternative way to access it with at:
print(df.at['Bill', 'job'])

# setting the job of Bill to 'data analyst' with 'loc'
df.loc['Bill', 'job'] = 'data analyst'
# let us check it:
print(df.loc['Bill', 'job'])

# setting the job of Bill to 'computer scientist' with 'at'
df.at['Pete', 'language'] = 'Python'

The following image shows what we have done:

Output:

last job language

Mike Meyer data analyst Python

Dorothee Maier programmer Perl

Tom Meyer computer scientist Java

Bill Mayer data scientist Java

Pete Meyr accountant Cobol

Kate Mair psychiatrist Brainfuck

data scientist
data scientist
data analyst
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You will ask yourself now which one you should use? The help on the at method says the following:
"Access a single value for a row/column label pair. Similar to loc , in that both provide label-based lookups.
Use at if you only need to get or set a single value in a DataFrame or Series." loc on the other hand can
be used to access a single value but also to access a group of rows and columns by a label or labels.

Another intestering question is about the speed of both methods in comparison. We will measure the time
behaviour in the following code examples:

%timeit df.loc['Bill', 'language'] = 'Python'

%timeit df.at['Bill', 'language'] = 'Python'

When it comes to speed the answer is clear: we should definitely use at .

129 µs ± 2.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops e
ach)

4.69 µs ± 209 ns per loop (mean ± std. dev. of 7 runs, 100000 loop
s each)
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REPLACE

The syntax of replace :

replace(self,
to_replace=None,
value=None,
inplace=False,
limit=None,
regex=False,
method='pad')

This method replaces values given in to_replace with value . This differs from updating with .loc
or .iloc , which requires you to specify a location to update with some value. With replace it is possible to
replace values in a Series or DataFrame without knowing where they occur.

replace works both with Series and DataFrames.

We will explain the way of working of the method replace by discussing the different data types of the
parameter to_replace individually:

TO_REPLACE CAN BE NUMERIC VALUE, STRING OR REGULAR EXPRESSION:

Data
Type processing

numeric
numeric values in the DataFrame (or Series) which are equal to to_replace will be replaced with parameter

value

str
If the parameter to_replace consists of a string, all the strings of the DataFrame (or Series) which exactly match

this string will be replaced by the value of the parameter value

regex
All strings inside of the DataFrame (or Series) which match the regular expression of to_replace will be replaced

with value

Let's start with a Series example. We will change one value into another one. Be aware of the fact that
replace by default creates a copy of the object in which all the values are replaced. This means that the

parameter inplace is set to False by default.

s = pd.Series([27, 33, 13, 19])
s.replace(13, 42)
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If we really want to change the object s is referencing, we should set the inplace parameter to True :

s = pd.Series([27, 33, 13, 19])
s.replace(13, 42, inplace=True)
s

We can also change multiple values into one single value, as you can see in the following example.

s = pd.Series([0, 1, 2, 3, 4])
s.replace([0, 1, 2], 42, inplace=True)
s

We will show now, how replace can be used on DataFrames. For this purpose we will recreate the example
from the beginning of this chapter of our tutorial. It will not be exactly the same though. More people have
learned Python now, but unfortunately somebody has put in some spelling errors in the word Python. Pete has
become a programmer now:

import pandas as pd
first = ('Mike', 'Dorothee', 'Tom', 'Bill', 'Pete', 'Kate')
last = ('Meyer', 'Maier', 'Meyer', 'Mayer', 'Meyr', 'Mair')
job = ('data analyst', 'programmer', 'computer scientist',

'data scientist', 'programmer', 'psychiatrist')
language = ('Python', 'Perl', 'Java', 'Pithon', 'Pythen', 'Brainfu
ck')

Output: 0    27
1    33
2    42
3    19
dtype: int64

Output: 0    27
1    33
2    42
3    19
dtype: int64

Output: 0    42
1    42
2    42
3     3
4     4
dtype: int64
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df = pd.DataFrame(list(zip(last, job, language)),
columns =['last', 'job', 'language'],
index=first)

df

Both ambitious Dorothee and enthusiastic Pete have finished a degree in Computer Science in the meantime.
So we have to change our DataFrame accodingly:

df.replace("programmer",
"computer scientist",
inplace=True)

df

Output:

last job language

Mike Meyer data analyst Python

Dorothee Maier programmer Perl

Tom Meyer computer scientist Java

Bill Mayer data scientist Pithon

Pete Meyr programmer Pythen

Kate Mair psychiatrist Brainfuck
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TO_REPLACE CAN BE A LIST CONSISTING OF STR, REGEX OR NUMERIC OBJECTS:

to_replace can be a list consisting of str, regex or numeric objects. If both the values of to_replace
and value are both lists, they must be the same length.

First, if to_replace and value are both lists, they must be the same length. Second, if
regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match

directly. We slightly changed our DataFrame for the next example. The first names build a column now!

df = pd.DataFrame(list(zip(first, last, job, language)),
columns =['first', 'last', 'job', 'language'])

df

Output:

last job language

Mike Meyer data analyst Python

Dorothee Maier computer scientist Perl

Tom Meyer computer scientist Java

Bill Mayer data scientist Pithon

Pete Meyr computer scientist Pythen

Kate Mair psychiatrist Brainfuck

Output:

first last job language

0 Mike Meyer data analyst Python

1 Dorothee Maier programmer Perl

2 Tom Meyer computer scientist Java

3 Bill Mayer data scientist Pithon

4 Pete Meyr programmer Pythen

5 Kate Mair psychiatrist Brainfuck
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'Mike' and 'Tom' are abbreviations of the real first names, so we will change them now. We are also glad to
announce that Dorothee finally migrated from Perl to Python:

df.replace(to_replace=['Mike', 'Tom', 'Perl'],
value= ['Michael', 'Thomas', 'Python'],
inplace=True)

df

USING REGULAR EXPRESSIONS

Now it is time to do something about the surnames in our DataFrame. All these names sound the same - at
least for German speakers. Let us assume that we just found out that they should all be spelled the same, i.e.
Mayer. Now the time has come for regular expression. The parameter to_replace can also be used with
regular expressions. We will use a regular expression to unify the surnames. We will also fix the misspellings
of Python:

df.replace(to_replace=[r'M[ea][iy]e?r', r'P[iy]th[eo]n'],
value=['Mayer', 'Python'],
regex=True,
inplace=True)

df

Output:

first last job language

0 Michael Meyer data analyst Python

1 Dorothee Maier programmer Python

2 Thomas Meyer computer scientist Java

3 Bill Mayer data scientist Pithon

4 Pete Meyr programmer Pythen

5 Kate Mair psychiatrist Brainfuck
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TO_REPLACE CAN BE A DICT

Dictionaries can be used to specify different replacement values for different existing values. For example,
{'a': 'b', 'y': 'z'} replaces the value 'a' with 'b' and 'y' with 'z'. To use a dict in this way the
value parameter should be None .

Ìf replace is applied on a DataFrame, a dict can specify that different values should be replaced in
different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column 'a' and the value
'z' in column 'b' and replaces these values with whatever is specified in value . The value parameter
should not be None in this case. You can treat this as a special case of passing two lists except that you are
specifying the column to search in.

If we use nested dictionaries like {'A': {'foo': 'bar'}} , they are interpreted like this: look in
column 'A' for the value 'foo' and replace it with 'bar'. The value parameter has to be None in this case.

df = pd.DataFrame({'A': [0, 1, 2, 3, 4],
'B': ['foo', 'bar', 'bloo', 'blee', 'bloo'],
'C': ['green', 'red', 'blue', 'yellow', 'gree

n']})

df.replace(to_replace={"A": {0: 42, 3: 33}, 'B': {'bloo': 'vlo
o'}},

inplace=True)
df

Output:

first last job language

0 Michael Mayer data analyst Python

1 Dorothee Mayer programmer Python

2 Thomas Mayer computer scientist Java

3 Bill Mayer data scientist Python

4 Pete Mayer programmer Python

5 Kate Mayer psychiatrist Brainfuck
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THE METHOD PARAMETER OF REPLACE:

When the parameter value is None and the parameter to_replace is a scalar, list or tuple, the
method replace will use the parameter method to decide which replacement to perform. The possible
values for method are pad , ffill , bfill , None . The default value is pad .

First of all, you have to know that pad and ffill are equivalent.

We will explain the way of working with the following Python example code. We will replace the values NN
and LN of the following DataFrame in different ways by using the parameter method .

import pandas as pd
df = pd.DataFrame({

'name':['Ben', 'Kate', 'Agnes', 'Ashleigh', 'Tom'],
'job':['programmer', 'NN', 'NN', 'engineer', 'teacher'],
'language':['Java', 'Python', 'LN', 'LN', 'C']})

Output:

A B C

0 42 foo green

1 1 bar red

2 2 vloo blue

3 33 blee yellow

4 4 vloo green
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We will start with changing the 'NN' values by using ffill in the parameter method :

The picture above shows how the following call to replace . In words: Every occurrence of NN in the
job column will have to be replaced. The value is defined by the parameter method . ffill means

'forward fill', i.e. we will take the preceding value to the first NN as the fill value. This is why we will replace
the values by 'programmer':

# method is backfill
df.replace(to_replace='NN',

value=None,
method='ffill')
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Instead of using a single value for to_replace we can also use a list or tuple. We will replace in the
following all occurrences of NN and LN accordingly, as we can see in the following picture:

df.replace(to_replace=['NN', 'LN'],
value=None,
method='ffill')

Output:

name job language

0 Ben programmer Java

1 Kate programmer Python

2 Agnes programmer LN

3 Ashleigh engineer LN

4 Tom teacher C
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We will show now what happens, if we use bfill (backward fill). Now the occurrences of 'LN' become 'C'
instead of Python. We also turn the 'NN's into engineers instead of programmers.

df.replace(['NN', 'LN'], value=None, method='bfill')

Output:

name job language

0 Ben programmer Java

1 Kate programmer Python

2 Agnes programmer Python

3 Ashleigh engineer Python

4 Tom teacher C
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df.replace('NN',
value=None,
inplace=True,
method='bfill')

df.replace('LN',
value=None,
inplace=True,
method='ffill')

df

OTHER EXAMPLES

We will present some more examples, which are taken from the help file of loc :

df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
index=['cobra', 'viper', 'sidewinder'],
columns=['max_speed', 'shield'])

Output:

name job language

0 Ben programmer Java

1 Kate engineer Python

2 Agnes engineer C

3 Ashleigh engineer C

4 Tom teacher C

Output:

name job language

0 Ben programmer Java

1 Kate engineer Python

2 Agnes engineer Python

3 Ashleigh engineer Python

4 Tom teacher C
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df

Single label. Note this returns the row as a Series:

df.loc['viper']

List of labels. Note using [[]] returns a DataFrame:

df.loc[['viper', 'sidewinder']]

Single label for row and column

df.loc['cobra', 'shield']

Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of
the slice are included.

df.loc['cobra':'viper', 'max_speed']

Output:

max_speed shield

cobra 1 2

viper 4 5

sidewinder 7 8

Output: max_speed    4
shield       5
Name: viper, dtype: int64

Output:

max_speed shield

viper 4 5

sidewinder 7 8

Output: 2
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Boolean list with the same length as the row axis

df.loc[[False, False, True]]

Conditional that returns a boolean Series

df.loc[df['shield'] > 6]

Conditional that returns a boolean Series with column labels specified

df.loc[df['shield'] > 6, ['max_speed']]

Callable that returns a boolean Series

df.loc[lambda df: df['shield'] == 8]

Output: cobra    1
viper    4
Name: max_speed, dtype: int64

Output:

max_speed shield

sidewinder 7 8

Output:

max_speed shield

sidewinder 7 8

Output:

max_speed

sidewinder 7

Output:

max_speed shield

sidewinder 7 8
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Set value for all items matching the list of labels

df.loc[['viper', 'sidewinder'], ['shield']] = 50
df

Set value for an entire row

df.loc['cobra'] = 10
df

Set value for an entire column

df.loc[:, 'max_speed'] = 30
df

Output:

max_speed shield

cobra 1 2

viper 4 50

sidewinder 7 50

Output:

max_speed shield

cobra 10 10

viper 4 50

sidewinder 7 50

Output:

max_speed shield

cobra 30 10

viper 30 50

sidewinder 30 50
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Set value for rows matching callable condition

df.loc[df['shield'] > 35] = 0
df

Output:

max_speed shield

cobra 30 10

viper 0 0

sidewinder 0 0
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P A N D A S :  G R O U P B Y

This chapter of our Pandas tutorial deals with an extremely
important functionality, i.e. groupby . It is not really
complicated, but it is not obvious at first glance and is
sometimes found to be difficult. Completely wrong, as we
shall see. It is also very important to become familiar with
'groupby' because it can be used to solve important
problems that would not be possible without it. The
Pandas groupby operation involves some combination
of splitting the object, applying a function, and combining
the results. We can split a DataFrame object into groups
based on various criteria and row and column-wise, i.e.
using axis .

'Applying' means

• to filter the data,
• transform the data or
• aggregate the data.

groupby can be applied to Pandas Series objects and
DataFrame objects! We will learn to understand how it works with many small practical examples in this
tutorial.

GOUPBY WITH SERIES

We create with the following Python program a Series object with an index of size nvalues . The index
will not be unique, because the strings for the index are taken from the list fruits , which has less elements
than nvalues :

import pandas as pd
import numpy as np
import random
nvalues = 30
# we create random values, which will be used as the Series value
s:
values = np.random.randint(1, 20, (nvalues,))
fruits = ["bananas", "oranges", "apples", "clementines", "cherrie
s", "pears"]
fruits_index = np.random.choice(fruits, (nvalues,))

s = pd.Series(values, index=fruits_index)
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print(s[:10])

grouped = s.groupby(s.index)
grouped

We can see that we get a SeriesGroupBy object, if we apply groupby on the index of our series
object s . The result of this operation grouped is iterable. In every step we get a tuple object returned,
which consists of an index label and a series object. The series object is s reduced to this label.

grouped = s.groupby(s.index)

for fruit, s_obj in grouped:
print(f"===== {fruit} =====")
print(s_obj)

bananas        19
oranges        12
clementines     6
oranges         6
clementines    11
bananas        17
clementines     5
apples          5
clementines    12
bananas         9
dtype: int64

Output: <pandas.core.groupby.generic.SeriesGroupBy object at 0x7fda33
1c1050>
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We could have got the same result - except for the order - without using `` groupby '' with the following
Python code.

===== apples =====
apples     5
apples    17
apples     9
apples    16
apples     9
dtype: int64
===== bananas =====
bananas    19
bananas    17
bananas     9
bananas    13
bananas     7
bananas    16
bananas    11
bananas    18
bananas    13
dtype: int64
===== cherries =====
cherries    12
dtype: int64
===== clementines =====
clementines     6
clementines    11
clementines     5
clementines    12
clementines    12
clementines     6
dtype: int64
===== oranges =====
oranges    12
oranges     6
oranges     9
dtype: int64
===== pears =====
pears    18
pears     9
pears    10
pears    10
pears     1
pears    16
dtype: int64
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for fruit in set(s.index):
print(f"===== {fruit} =====")
print(s[fruit])

===== cherries =====
12
===== oranges =====
oranges    12
oranges     6
oranges     9
dtype: int64
===== pears =====
pears    18
pears     9
pears    10
pears    10
pears     1
pears    16
dtype: int64
===== clementines =====
clementines     6
clementines    11
clementines     5
clementines    12
clementines    12
clementines     6
dtype: int64
===== bananas =====
bananas    19
bananas    17
bananas     9
bananas    13
bananas     7
bananas    16
bananas    11
bananas    18
bananas    13
dtype: int64
===== apples =====
apples     5
apples    17
apples     9
apples    16
apples     9
dtype: int64
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GROUPBY WITH DATAFRAMES

We will start with a very simple DataFrame. The DataFRame has two columns one containing names Name
and the other one Coffee contains integers which are the number of cups of coffee the person drank.

import pandas as pd
beverages = pd.DataFrame({'Name': ['Robert', 'Melinda', 'Brenda',

'Samantha', 'Melinda', 'Rober
t',

'Melinda', 'Brenda', 'Samanth
a'],

'Coffee': [3, 0, 2, 2, 0, 2, 0, 1, 3],
'Tea': [0, 4, 2, 0, 3, 0, 3, 2, 0]})

beverages

It's simple, and we've already seen in the previous chapters of our tutorial how to calculate the total number of
coffee cups. The task is to sum a column of a DatFrame, i.e. the 'Coffee' column:

beverages['Coffee'].sum()

Output:

Name Coffee Tea

0 Robert 3 0

1 Melinda 0 4

2 Brenda 2 2

3 Samantha 2 0

4 Melinda 0 3

5 Robert 2 0

6 Melinda 0 3

7 Brenda 1 2

8 Samantha 3 0

Output: 13
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Let's compute now the total number of coffees and teas:

beverages[['Coffee', 'Tea']].sum()

'groupby' has not been necessary for the previous tasks. Let's have a look at our DataFrame again. We can see
that some of the names appear multiple times. So it will be very interesting to see how many cups of coffee
and tea each person drank in total. That means we are applying 'groupby' to the 'Name' column. Thereby we
split the DatFrame. Then we apply 'sum' to the results of 'groupby':

res = beverages.groupby(['Name']).sum()
print(res)

We can see that the names are now the index of the resulting DataFrame:

print(res.index)

There is only one column left, i.e. the Coffee column:

print(res.columns)

We can also calculate the average number of coffee and tea cups the persons had:

beverages.groupby(['Name']).mean()

Output: Coffee    13
Tea       14
dtype: int64

Coffee  Tea
Name
Brenda         3    4
Melinda        0   10
Robert         5    0
Samantha       5    0

Index(['Brenda', 'Melinda', 'Robert', 'Samantha'], dtype='objec
t', name='Name')

Index(['Coffee', 'Tea'], dtype='object')

PANDAS: GROUPBY 366



ANOTHER EXAMPLE

The following Python code is used to create the data, we will use in our next groupby example. It is not
necessary to understand the following Python code for the content following afterwards. The module faker
has to be installed. In cae of an Anaconda installation this can be done by executing one of the following
commands in a shell:

conda install -c conda-forge faker
conda install -c conda-forge/label/gcc7 faker
conda install -c conda-forge/label/cf201901 faker
conda install -c conda-forge/label/cf202003 faker

from faker import Faker
import numpy as np
from itertools import chain

fake = Faker('de_DE')

number_of_names = 10
names = []
for _ in range(number_of_names):

names.append(fake.first_name())

data = {}
workweek = ("Monday", "Tuesday", "Wednesday", "Thursday", "Frida
y")
weekend = ("Saturday", "Sunday")

for day in chain(workweek, weekend):
data[day] = np.random.randint(0, 10, (number_of_names,))

Output:

Coffee Tea

Name

Brenda 1.5 2.000000

Melinda 0.0 3.333333

Robert 2.5 0.000000

Samantha 2.5 0.000000
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data_df = pd.DataFrame(data, index=names)
data_df

print(names)

names = ('Ortwin', 'Mara', 'Siegrun', 'Sylvester', 'Metin', 'Adeli
ne', 'Utz', 'Susan', 'Gisbert', 'Senol')
data = {'Monday': np.array([0, 9, 2, 3, 7, 3, 9, 2, 4, 9]),

'Tuesday': np.array([2, 6, 3, 3, 5, 5, 7, 7, 1, 0]),
'Wednesday': np.array([6, 1, 1, 9, 4, 0, 8, 6, 8, 8]),
'Thursday': np.array([1, 8, 6, 9, 9, 4, 1, 7, 3, 2]),
'Friday': np.array([3, 5, 6, 6, 5, 2, 2, 4, 6, 5]),
'Saturday': np.array([8, 4, 8, 2, 3, 9, 3, 4, 9, 7]),
'Sunday': np.array([0, 8, 7, 8, 9, 7, 2, 0, 5, 2])}

data_df = pd.DataFrame(data, index=names)
data_df

Output:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Kenan 0 0 5 9 2 2 9

Jovan 9 1 5 1 0 0 0

Stanislaus 6 7 5 1 1 5 3

Adelinde 2 2 5 8 7 4 9

Cengiz 2 7 3 8 4 6 9

Edeltraud 4 7 9 9 7 9 7

Sara 7 1 7 0 7 8 3

Gerda 9 8 7 0 8 5 8

Tilman 5 1 9 4 7 5 5

Roswita 1 8 5 3 5 3 9

['Kenan', 'Jovan', 'Stanislaus', 'Adelinde', 'Cengiz', 'Edeltrau
d', 'Sara', 'Gerda', 'Tilman', 'Roswita']
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We will demonstrate with this DataFrame how to combine columns by a function.

def is_weekend(day):
if day in {'Saturday', 'Sunday'}:

return "Weekend"
else:

return "Workday"

for res_func, df in data_df.groupby(by=is_weekend, axis=1):
print(df)

Output:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Ortwin 0 2 6 1 3 8 0

Mara 9 6 1 8 5 4 8

Siegrun 2 3 1 6 6 8 7

Sylvester 3 3 9 9 6 2 8

Metin 7 5 4 9 5 3 9

Adeline 3 5 0 4 2 9 7

Utz 9 7 8 1 2 3 2

Susan 2 7 6 7 4 4 0

Gisbert 4 1 8 3 6 9 5

Senol 9 0 8 2 5 7 2
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data_df.groupby(by=is_weekend, axis=1).sum()

Saturday  Sunday
Ortwin            8       0
Mara              4       8
Siegrun           8       7
Sylvester         2       8
Metin             3       9
Adeline           9       7
Utz               3       2
Susan             4       0
Gisbert           9       5
Senol             7       2

Monday  Tuesday  Wednesday  Thursday  Friday
Ortwin          0        2          6         1       3
Mara            9        6          1         8       5
Siegrun         2        3          1         6       6
Sylvester       3        3          9         9       6
Metin           7        5          4         9       5
Adeline         3        5          0         4       2
Utz             9        7          8         1       2
Susan           2        7          6         7       4
Gisbert         4        1          8         3       6
Senol           9        0          8         2       5
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EXERCISES

EXERCISE 1

Calculate the average prices of the products of the following DataFrame:

import pandas as pd
d = {"products": ["Oppilume", "Dreaker", "Lotadilo",

"Crosteron", "Wazzasoft", "Oppilume",
"Dreaker", "Lotadilo", "Wazzasoft"],

"colours": ["blue", "blue", "blue",
"green", "blue", "green",
"green", "green", "red"],

"customer_price": [2345.89, 2390.50, 1820.00,
3100.00, 1784.50, 2545.89,
2590.50, 2220.00, 2084.50],

"non_customer_price": [2445.89, 2495.50, 1980.00,
3400.00, 1921.00, 2645.89,

Output:

Weekend Workday

Ortwin 8 12

Mara 12 29

Siegrun 15 18

Sylvester 10 30

Metin 12 30

Adeline 16 14

Utz 5 27

Susan 4 26

Gisbert 14 22

Senol 9 24
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2655.50, 2140.00, 2190.00]}

product_prices = pd.DataFrame(d)
product_prices

EXERCISE 2

Calculate the sum of the price according to the colours.

EXERCISE 3

Read in the project_times.txt file from the data1 directory. This rows of this file contain comma
separated the date, the name of the programmer, the name of the project, the time the programmer spent on the
project.

Calculate the time spend on all the projects per day

EXERCISE 4

Create a DateFrame containing the total times spent on a project per day by all the programmers

Output:

products colours customer_price non_customer_price

0 Oppilume blue 2345.89 2445.89

1 Dreaker blue 2390.50 2495.50

2 Lotadilo blue 1820.00 1980.00

3 Crosteron green 3100.00 3400.00

4 Wazzasoft blue 1784.50 1921.00

5 Oppilume green 2545.89 2645.89

6 Dreaker green 2590.50 2655.50

7 Lotadilo green 2220.00 2140.00

8 Wazzasoft red 2084.50 2190.00
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EXERCISE 5

Calculate the total times spent on the projects over the whole month.

EXERCISE 6

Calculate the monthly times of each programmer regardless of the projects

EXERCISE 7

Rearrange the DataFrame with a MultiIndex consisting of the date and the project names, the columns should
be the programmer names and the data of the columns the time of the programmers spent on the projects.

time
programmer         Antonie  Elise  Fatima  Hella  Mariola
date     project
2020-01-01 BIRDY   NaN      NaN    NaN     1.50   1.75

NSTAT   NaN      NaN    0.25    NaN    1.25
XTOR    NaN      NaN    NaN     1.00   3.50

2020-01-02 BIRDY   NaN      NaN    NaN     1.75   2.00
NSTAT   0.5      NaN    NaN     NaN    1.75

Replace the NaN values by 0.

SOLUTIONS

SOLUTION TO EXERCISE 1

x = product_prices.groupby("products").mean()
x
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SOLUTION TO EXERCISE 2

x = product_prices.groupby("colours").sum()
x

SOLUTION TO EXERCISE 3

import pandas as pd
df = pd.read_csv("data1/project_times.txt", index_col=0)
df

Output:

customer_price non_customer_price

products

Crosteron 3100.00 3400.00

Dreaker 2490.50 2575.50

Lotadilo 2020.00 2060.00

Oppilume 2445.89 2545.89

Wazzasoft 1934.50 2055.50

Output:

customer_price non_customer_price

colours

blue 8340.89 8842.39

green 10456.39 10841.39

red 2084.50 2190.00
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times_per_day = df.groupby(df.index).sum()
print(times_per_day[:10])

Output:

programmer project time

date

2020-01-01 Hella XTOR 1.00

2020-01-01 Hella BIRDY 1.50

2020-01-01 Fatima NSTAT 0.25

2020-01-01 Mariola NSTAT 0.50

2020-01-01 Mariola BIRDY 1.75

... ... ... ...

2030-01-30 Antonie XTOR 0.50

2030-01-31 Hella BIRDY 1.25

2030-01-31 Hella BIRDY 1.75

2030-01-31 Mariola BIRDY 1.00

2030-01-31 Hella BIRDY 1.00

17492 rows × 3 columns

time
date
2020-01-01   9.25
2020-01-02   6.00
2020-01-03   2.50
2020-01-06   5.75
2020-01-07  15.00
2020-01-08  13.25
2020-01-09  10.25
2020-01-10  17.00
2020-01-13   4.75
2020-01-14  10.00
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SOLUTION TO EXERCISE 4

times_per_day_project = df.groupby([df.index, 'project']).sum()
print(times_per_day_project[:10])

SOLUTION TO EXERCISE 5

df.groupby(['project']).sum()

SOLUTION TO EXERCISE 6

df.groupby(['programmer']).sum()

time
date       project
2020-01-01 BIRDY    3.25

NSTAT    1.50
XTOR     4.50

2020-01-02 BIRDY    3.75
NSTAT    2.25

2020-01-03 BIRDY    1.00
NSTAT    0.25
XTOR     1.25

2020-01-06 BIRDY    2.75
NSTAT    0.75

Output:

time

project

BIRDY 9605.75

NSTAT 8707.75

XTOR 6427.50
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SOLUTION TO EXERCISE 7

x = df.groupby([df.index, 'project', 'programmer']).sum()

x = x.unstack()
x

Output:

time

programmer

Antonie 1511.25

Elise 80.00

Fatima 593.00

Hella 10642.00

Mariola 11914.75
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x = x.fillna(0)
print(x[:10])

Output:

time

programmer Antonie Elise Fatima Hella Mariola

date project

2020-01-01 BIRDY NaN NaN NaN 1.50 1.75

NSTAT NaN NaN 0.25 NaN 1.25

XTOR NaN NaN NaN 1.00 3.50

2020-01-02 BIRDY NaN NaN NaN 1.75 2.00

NSTAT 0.5 NaN NaN NaN 1.75

... ... ... ... ... ... ...

2030-01-29 XTOR NaN NaN NaN 1.00 5.50

2030-01-30 BIRDY NaN NaN NaN 0.75 4.75

NSTAT NaN NaN NaN 3.75 NaN

XTOR 0.5 NaN NaN 0.75 NaN

2030-01-31 BIRDY NaN NaN NaN 4.00 1.00

7037 rows × 5 columns
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time
programmer         Antonie Elise Fatima Hella Mariola
date       project
2020-01-01 BIRDY      0.00   0.0   0.00  1.50    1.75

NSTAT      0.00   0.0   0.25  0.00    1.25
XTOR       0.00   0.0   0.00  1.00    3.50

2020-01-02 BIRDY      0.00   0.0   0.00  1.75    2.00
NSTAT      0.50   0.0   0.00  0.00    1.75

2020-01-03 BIRDY      0.00   0.0   1.00  0.00    0.00
NSTAT      0.25   0.0   0.00  0.00    0.00
XTOR       0.00   0.0   0.00  0.50    0.75

2020-01-06 BIRDY      0.00   0.0   0.00  2.50    0.25
NSTAT      0.00   0.0   0.00  0.00    0.75
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R E A D I N G  A N D  W R I T I N G  D A T A

All the powerful data structures like the Series and the
DataFrames would avail to nothing, if the Pandas module
wouldn't provide powerful functionalities for reading in
and writing out data. It is not only a matter of having a
functions for interacting with files. To be useful to data
scientists it also needs functions which support the most
important data formats like

• Delimiter-separated files, like e.g. csv
• Microsoft Excel files
• HTML
• XML
• JSON

DELIMITER-SEPARATED VALUES

Most people take csv files as a synonym for delimter-
separated values files. They leave the fact out of account
that csv is an acronym for "comma separated values",
which is not the case in many situations. Pandas also uses
"csv" and contexts, in which "dsv" would be more
appropriate.

Delimiter-separated values (DSV) are defined and stored
two-dimensional arrays (for example strings) of data by
separating the values in each row with delimiter characters defined for this purpose. This way of implementing
data is often used in combination of spreadsheet programs, which can read in and write out data as DSV. They
are also used as a general data exchange format.

We call a text file a "delimited text file" if it contains text in DSV format.

For example, the file dollar_euro.txt is a delimited text file and uses tabs (\t) as delimiters.

READING CSV AND DSV FILES

Pandas offers two ways to read in CSV or DSV files to be precise:

• DataFrame.from_csv
• read_csv

There is no big difference between those two functions, e.g. they have different default values in some cases
and read_csv has more paramters. We will focus on read_csv, because DataFrame.from_csv is kept inside
Pandas for reasons of backwards compatibility.
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import pandas as pd
exchange_rates = pd.read_csv("data1/dollar_euro.txt",

sep="\t")
print(exchange_rates)

As we can see, read_csv used automatically the first line as the names for the columns. It is possible to give
other names to the columns. For this purpose, we have to skip the first line by setting the parameter "header"
to 0 and we have to assign a list with the column names to the parameter "names":

import pandas as pd
exchange_rates = pd.read_csv("data1/dollar_euro.txt",

sep="\t",
header=0,
names=["year", "min", "max", "days"])

print(exchange_rates)

Year   Average  Min USD/EUR  Max USD/EUR  Working days
0   2016  0.901696     0.864379     0.959785           247
1   2015  0.901896     0.830358     0.947688           256
2   2014  0.753941     0.716692     0.823655           255
3   2013  0.753234     0.723903     0.783208           255
4   2012  0.778848     0.743273     0.827198           256
5   2011  0.719219     0.671953     0.775855           257
6   2010  0.755883     0.686672     0.837381           258
7   2009  0.718968     0.661376     0.796495           256
8   2008  0.683499     0.625391     0.802568           256
9   2007  0.730754     0.672314     0.775615           255
10  2006  0.797153     0.750131     0.845594           255
11  2005  0.805097     0.740357     0.857118           257
12  2004  0.804828     0.733514     0.847314           259
13  2003  0.885766     0.791766     0.963670           255
14  2002  1.060945     0.953562     1.165773           255
15  2001  1.117587     1.047669     1.192748           255
16  2000  1.085899     0.962649     1.211827           255
17  1999  0.939475     0.848176     0.998502           261
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EXERCISE

The file "countries_population.csv" is a csv file, containing the population numbers of all countries (July
2014). The delimiter of the file is a space and commas are used to separate groups of thousands in the
numbers. The method 'head(n)' of a DataFrame can be used to give out only the first n rows or lines. Read the
file into a DataFrame.

Solution:

pop = pd.read_csv("data1/countries_population.csv",
header=None,
names=["Country", "Population"],
index_col=0,
quotechar="'",
sep=" ",
thousands=",")

print(pop.head(5))

year       min       max  days
2016  0.901696  0.864379  0.959785   247
2015  0.901896  0.830358  0.947688   256
2014  0.753941  0.716692  0.823655   255
2013  0.753234  0.723903  0.783208   255
2012  0.778848  0.743273  0.827198   256
2011  0.719219  0.671953  0.775855   257
2010  0.755883  0.686672  0.837381   258
2009  0.718968  0.661376  0.796495   256
2008  0.683499  0.625391  0.802568   256
2007  0.730754  0.672314  0.775615   255
2006  0.797153  0.750131  0.845594   255
2005  0.805097  0.740357  0.857118   257
2004  0.804828  0.733514  0.847314   259
2003  0.885766  0.791766  0.963670   255
2002  1.060945  0.953562  1.165773   255
2001  1.117587  1.047669  1.192748   255
2000  1.085899  0.962649  1.211827   255
1999  0.939475  0.848176  0.998502   261

Population
Country
China           1355692576
India           1236344631
European Union   511434812
United States    318892103
Indonesia        253609643
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WRITING CSV FILES

We can create csv (or dsv) files with the method "to_csv". Before we do this, we will prepare some data to
output, which we will write to a file. We have two csv files with population data for various countries.
countries_male_population.csv contains the figures of the male populations and
countries_female_population.csv correspondingly the numbers for the female populations. We will create a
new csv file with the sum:

column_names = ["Country"] + list(range(2002, 2013))
male_pop = pd.read_csv("data1/countries_male_population.csv",

header=None,
index_col=0,
names=column_names)

female_pop = pd.read_csv("data1/countries_female_population.csv",
header=None,
index_col=0,
names=column_names)

population = male_pop + female_pop
population
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Output:

2002 2003 2004 2005 2006 2007 2008 2009

Country

Australia 19640979.0 19872646 20091504 20339759 20605488 21015042 21431781 21874920

Austria 8139310.0 8067289 8140122 8206524 8265925 8298923 8331930 8355260

Belgium 10309725.0 10355844 10396421 10445852 10511382 10584534 10666866 10753080

Canada NaN 31361611 31372587 31989454 32299496 32649482 32927372 33327337

Czech
Republic 10269726.0 10203269 10211455 10220577 10251079 10287189 10381130 10467542

Denmark 5368354.0 5383507 5397640 5411405 5427459 5447084 5475791 5511451

Finland 5194901.0 5206295 5219732 5236611 5255580 5276955 5300484 5326314

France 59337731.0 59630121 59900680 62518571 62998773 63392140 63753140 64366962

Germany 82440309.0 82536680 82531671 82500849 82437995 82314906 82217837 82002356

Greece 10988000.0 11006377 11040650 11082751 11125179 11171740 11213785 11260402

Hungary 10174853.0 10142362 10116742 10097549 10076581 10066158 10045401 10030975

Iceland 286575.0 288471 290570 293577 299891 307672 315459 319368

Ireland 3882683.0 3963636 4027732 4109173 4209019 4239848 4401335 4450030

Italy 56993742.0 57321070 57888245 58462375 58751711 59131287 59619290 60045068

Japan 127291000.0 127435000 127620000 127687000 127767994 127770000 127771000 127692000

Korea 47639618.0 47925318 48082163 48138077 48297184 48456369 48606787 48746693

Luxembourg 444050.0 448300 451600 455000 469086 476187 483799 493500

Mexico 101826249.0 103039964 104213503 103001871 103946866 104874282 105790725 106682518

Netherlands 16105285.0 16192572 16258032 16305526 16334210 16357992 16405399 16485787
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population.to_csv("data1/countries_total_population.csv")

We want to create a new DataFrame with all the information, i.e. female, male and complete population. This
means that we have to introduce an hierarchical index. Before we do it on our DataFrame, we will introduce
this problem in a simple example:

import pandas as pd
shop1 = {"foo":{2010:23, 2011:25}, "bar":{2010:13, 2011:29}}
shop2 = {"foo":{2010:223, 2011:225}, "bar":{2010:213, 2011:229}}

shop1 = pd.DataFrame(shop1)
shop2 = pd.DataFrame(shop2)

2002 2003 2004 2005 2006 2007 2008 2009

Country

New
Zealand 3939130.0 4009200 4062500 4100570 4139470 4228280 4268880 4315840

Norway 4524066.0 4552252 4577457 4606363 4640219 4681134 4737171 4799252

Poland 38632453.0 38218531 38190608 38173835 38157055 38125479 38115641 38135876

Portugal 10335559.0 10407465 10474685 10529255 10569592 10599095 10617575 10627250

Slovak
Republic 5378951.0 5379161 5380053 5384822 5389180 5393637 5400998 5412254

Spain 40409330.0 41550584 42345342 43038035 43758250 44474631 45283259 45828172

Sweden 8909128.0 8940788 8975670 9011392 9047752 9113257 9182927 9256347

Switzerland 7261210.0 7313853 7364148 7415102 7459128 7508739 7593494 7701856

Turkey NaN 70171979 70689500 71607500 72519974 72519974 70586256 71517100

United
Kingdom 58706905.0 59262057 59699828 60059858 60412870 60781346 61179260 61595094

United
States 277244916.0 288774226 290810719 294442683 297308143 300184434 304846731 305127551
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both_shops = shop1 + shop2
print("Sales of shop1:\n", shop1)
print("\nSales of both shops\n", both_shops)

shops = pd.concat([shop1, shop2], keys=["one", "two"])
shops

We want to swap the hierarchical indices. For this we will use 'swaplevel':

shops.swaplevel()
shops.sort_index(inplace=True)
shops

Sales of shop1:
foo  bar

2010   23   13
2011   25   29

Sales of both shops
foo  bar

2010  246  226
2011  250  258

Output:

foo bar

one 2010 23 13

2011 25 29

two 2010 223 213

2011 225 229
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We will go back to our initial problem with the population figures. We will apply the same steps to those
DataFrames:

pop_complete = pd.concat([population.T,
male_pop.T,
female_pop.T],
keys=["total", "male", "female"])

df = pop_complete.swaplevel()
df.sort_index(inplace=True)
df[["Austria", "Australia", "France"]]

Output:

foo bar

one 2010 23 13

2011 25 29

two 2010 223 213

2011 225 229
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Output:

Country Austria Australia France

2002 female 4179743.0 9887846.0 30510073.0

male 3959567.0 9753133.0 28827658.0

total 8139310.0 19640979.0 59337731.0

2003 female 4158169.0 9999199.0 30655533.0

male 3909120.0 9873447.0 28974588.0

total 8067289.0 19872646.0 59630121.0

2004 female 4190297.0 10100991.0 30789154.0

male 3949825.0 9990513.0 29111526.0

total 8140122.0 20091504.0 59900680.0

2005 female 4220228.0 10218321.0 32147490.0

male 3986296.0 10121438.0 30371081.0

total 8206524.0 20339759.0 62518571.0

2006 female 4246571.0 10348070.0 32390087.0

male 4019354.0 10257418.0 30608686.0

total 8265925.0 20605488.0 62998773.0

2007 female 4261752.0 10570420.0 32587979.0

male 4037171.0 10444622.0 30804161.0

total 8298923.0 21015042.0 63392140.0

2008 female 4277716.0 10770864.0 32770860.0

male 4054214.0 10660917.0 30982280.0
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df.to_csv("data1/countries_total_population.csv")

EXERCISE

• Read in the dsv file (csv) bundeslaender.txt. Create a new file with the columns 'land', 'area',
'female', 'male', 'population' and 'density' (inhabitants per square kilometres.

• print out the rows where the area is greater than 30000 and the population is greater than 10000
• Print the rows where the density is greater than 300

lands = pd.read_csv('data1/bundeslaender.txt', sep=" ")
print(lands.columns.values)

Country Austria Australia France

total 8331930.0 21431781.0 63753140.0

2009 female 4287213.0 10986535.0 33208315.0

male 4068047.0 10888385.0 31158647.0

total 8355260.0 21874920.0 64366962.0

2010 female 4296197.0 11218144.0 33384930.0

male 4079093.0 11124254.0 31331380.0

total 8375290.0 22342398.0 64716310.0

2011 female 4308915.0 11359807.0 33598633.0

male 4095337.0 11260747.0 31531113.0

total 8404252.0 22620554.0 65129746.0

2012 female 4324983.0 11402769.0 33723892.0

male 4118035.0 11280804.0 31670391.0

total 8443018.0 22683573.0 65394283.0

['land' 'area' 'male' 'female']
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# swap the columns of our DataFrame:
lands = lands.reindex(columns=['land', 'area', 'female', 'male'])
lands[:2]

lands.insert(loc=len(lands.columns),
column='population',
value=lands['female'] + lands['male'])

lands[:3]

lands.insert(loc=len(lands.columns),
column='density',
value=(lands['population'] * 1000 / lands['area']).ro

und(0))

lands[:4]

Output:

land area female male

0 Baden-Württemberg 35751.65 5465 5271

1 Bayern 70551.57 6366 6103

Output:

land area female male population

0 Baden-Württemberg 35751.65 5465 5271 10736

1 Bayern 70551.57 6366 6103 12469

2 Berlin 891.85 1736 1660 3396

Output:

land area female male population density

0 Baden-Württemberg 35751.65 5465 5271 10736 300.0

1 Bayern 70551.57 6366 6103 12469 177.0

2 Berlin 891.85 1736 1660 3396 3808.0

3 Brandenburg 29478.61 1293 1267 2560 87.0
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print(lands.loc[(lands.area>30000) & (lands.population>10000)])

READING AND WRITING EXCEL FILES

It is also possible to read and write Microsoft Excel files. The Pandas functionalities to read and write Excel
files use the modules 'xlrd' and 'openpyxl'. These modules are not automatically installed by Pandas, so you
may have to install them manually!

We will use a simple Excel document to demonstrate the reading capabilities of Pandas. The document
sales.xls contains two sheets, one called 'week1' and the other one 'week2'.
An Excel file can be read in with the Pandas function "read_excel". This is demonstrated in the following
example Python code:

excel_file = pd.ExcelFile("data1/sales.xls")

sheet = pd.read_excel(excel_file)
sheet

The document "sales.xls" contains two sheets, but we only have been able to read in the first one with
"read_excel". A complete Excel document, which can consist of an arbitrary number of sheets, can be
completely read in like this:

land      area  female  male  population  densit
y
0    Baden-Württemberg  35751.65    5465  5271       10736    30
0.0
1               Bayern  70551.57    6366  6103       12469    17
7.0
9  Nordrhein-Westfalen  34085.29    9261  8797       18058    53
0.0

Output:

Weekday Sales

0 Monday 123432.980000

1 Tuesday 122198.650200

2 Wednesday 134418.515220

3 Thursday 131730.144916

4 Friday 128173.431003
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docu = {}
for sheet_name in excel_file.sheet_names:

docu[sheet_name] = excel_file.parse(sheet_name)

for sheet_name in docu:
print("\n" + sheet_name + ":\n", docu[sheet_name])

We will calculate now the avarage sales numbers of the two weeks:

average = docu["week1"].copy()
average["Sales"] = (docu["week1"]["Sales"] + docu["week2"]["Sale
s"]) / 2
print(average)

We will save the DataFrame 'average' in a new document with 'week1' and 'week2' as additional sheets as well:

writer = pd.ExcelWriter('data1/sales_average.xlsx')
document['week1'].to_excel(writer,'week1')
document['week2'].to_excel(writer,'week2')
average.to_excel(writer,'average')
writer.save()
writer.close()

week1:
Weekday          Sales

0     Monday  123432.980000
1    Tuesday  122198.650200
2  Wednesday  134418.515220
3   Thursday  131730.144916
4     Friday  128173.431003

week2:
Weekday          Sales

0     Monday  223277.980000
1    Tuesday  234441.879000
2  Wednesday  246163.972950
3   Thursday  241240.693491
4     Friday  230143.621590

Weekday          Sales
0     Monday  173355.480000
1    Tuesday  178320.264600
2  Wednesday  190291.244085
3   Thursday  186485.419203
4     Friday  179158.526297
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D E A L I N G  W I T H  N A N

INTRODUCTION

NaN was introduced, at least officially, by
the IEEE Standard for Floating-Point
Arithmetic (IEEE 754). It is a technical
standard for floating-point computation
established in 1985 - many years before
Python was invented, and even a longer
time befor Pandas was created - by the
Institute of Electrical and Electronics
Engineers (IEEE). It was introduced to
solve problems found in many floating
point implementations that made them
difficult to use reliably and portably.

This standard added NaN to the arithmetic
formats: "arithmetic formats: sets of
binary and decimal floating-point data,
which consist of finite numbers (including
signed zeros and subnormal numbers),
infinities, and special 'not a number' values (NaNs)"

'NAN' IN PYTHON

Python knows NaN values as well. We can create it with "float":

n1 = float("nan")
n2 = float("Nan")
n3 = float("NaN")
n4 = float("NAN")
print(n1, n2, n3, n4)

"nan" is also part of the math module since Python 3.5:

nan nan nan nan
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import math
n1 = math.nan
print(n1)
print(math.isnan(n1))

Warning: Do not perform comparison between "NaN" values or "Nan" values and regular numbers. A simple
or simplified reasoning is this: Two things are "not a number", so they can be anything but most probably not
the same. Above all there is no way of ordering NaNs:

print(n1 == n2)
print(n1 == 0)
print(n1 == 100)
print(n2 < 0)

NAN IN PANDAS

EXAMPLE WITHOUT NANS

Before we will work with NaN data, we will process a file without any NaN values. The data file
temperatures.csv contains the temperature data of six sensors taken every 15 minuts between 6:00 to 19.15
o'clock.

Reading in the data file can be done with the read_csv function:

import pandas as pd
df = pd.read_csv("data1/temperatures.csv",

sep=";",
decimal=",")

df.loc[:3]

nan
True

False
False
False
False
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We want to calculate the avarage temperatures per measuring point over all the sensors. We can use the
DataFrame method 'mean'. If we use 'mean' without parameters it will sum up the sensor columns, which isn't
what we want, but it may be interesting as well:

df.mean()

average_temp_series = df.mean(axis=1)
print(average_temp_series[:8])

sensors = df.columns.values[1:]
# all columns except the time column will be removed:
df = df.drop(sensors, axis=1)
print(df[:5])

Output:

time sensor1 sensor2 sensor3 sensor4 sensor5 sensor6

0 06:00:00 14.3 13.7 14.2 14.3 13.5 13.6

1 06:15:00 14.5 14.5 14.0 15.0 14.5 14.7

2 06:30:00 14.6 15.1 14.8 15.3 14.0 14.2

3 06:45:00 14.8 14.5 15.6 15.2 14.7 14.6

Output: sensor1    19.775926
sensor2    19.757407
sensor3    19.840741
sensor4    20.187037
sensor5    19.181481
sensor6    19.437037
dtype: float64

0    13.933333
1    14.533333
2    14.666667
3    14.900000
4    15.083333
5    15.116667
6    15.283333
7    15.116667
dtype: float64
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We will assign now the average temperature values as a new column 'temperature':

# best practice:
df = df.assign(temperature=average_temp_series) # inplace option
not available

# alternatively:
#df.loc[:,"temperature"] = average_temp_series

df[:3]

EXAMPLE WITH NANS

We will use now a data file similar to the previous temperature csv, but this time we will have to cope with
NaN data, when the sensors malfunctioned.

We will create a temperature DataFrame, in which some data is not defined, i.e. NaN.

We will use and change the data from the the temperatures.csv file:

import pandas as pd
temp_df = pd.read_csv("data1/temperatures.csv",

sep=";",
index_col=0,
decimal=",")

temp_df[:8]

time
0  06:00:00
1  06:15:00
2  06:30:00
3  06:45:00
4  07:00:00

Output:

time temperature

0 06:00:00 13.933333

1 06:15:00 14.533333

2 06:30:00 14.666667
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We will randomly assign some NaN values into the data frame. For this purpose, we will use the where
method from DataFrame. If we apply where to a DataFrame object df, i.e. df.where(cond, other_df), it will
return an object of same shape as df and whose corresponding entries are from df where the corresponding
element of cond is True and otherwise are taken from other_df.

Before we continue with our task, we will demonstrate the way of working of where with some simple
examples:

s = pd.Series(range(5)) s.where(s > 0)

import numpy as np
A = np.random.randint(1, 30, (4, 2))

df = pd.DataFrame(A, columns=['Foo', 'Bar'])
m = df % 2 == 0
df.where(m, -df, inplace=True)
df

Output:

sensor1 sensor2 sensor3 sensor4 sensor5 sensor6

time

06:00:00 14.3 13.7 14.2 14.3 13.5 13.6

06:15:00 14.5 14.5 14.0 15.0 14.5 14.7

06:30:00 14.6 15.1 14.8 15.3 14.0 14.2

06:45:00 14.8 14.5 15.6 15.2 14.7 14.6

07:00:00 15.0 14.9 15.7 15.6 14.0 15.3

07:15:00 15.2 15.2 14.6 15.3 15.5 14.9

07:30:00 15.4 15.3 15.6 15.6 14.7 15.1

07:45:00 15.5 14.8 15.4 15.5 14.6 14.9
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For our task, we need to create a DataFrame 'nan_df', which consists purely of NaN values and has the same
shape as our temperature DataFrame 'temp_df'. We will use this DataFrame in 'where'. We also need a
DataFrame with the conditions "df_bool" as True values. For this purpose we will create a DataFrame with
random values between 0 and 1 and by applying 'random_df < 0.8' we get the df_bool DataFrame, in which
about 20 % of the values will be True:

random_df = pd.DataFrame(np.random.random(size=temp_df.shape),
columns=temp_df.columns.values,
index=temp_df.index)

nan_df = pd.DataFrame(np.nan,
columns=temp_df.columns.values,
index=temp_df.index)

df_bool = random_df<0.8

df_bool[:5]

Output:

Foo Bar

0 18 -5

1 22 -7

2 14 -3

3 16 -23

Output:

sensor1 sensor2 sensor3 sensor4 sensor5 sensor6

time

06:00:00 True True True True True True

06:15:00 True True True False True True

06:30:00 True True True True True False

06:45:00 True True True True False True

07:00:00 True True True True True True
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Finally, we have everything toghether to create our DataFrame with distrubed measurements:

disturbed_data = temp_df.where(df_bool, nan_df)

disturbed_data.to_csv("data1/temperatures_with_NaN.csv")
disturbed_data[:10]

USING DROPNA ON THE DATAFRAME

'dropna' is a DataFrame method. If we call this method without arguments, it will return an object where every
row is ommitted, in which data are missing, i.e. some value is NaN:

df = disturbed_data.dropna()
df

Output:

sensor1 sensor2 sensor3 sensor4 sensor5 sensor6

time

06:00:00 14.3 13.7 14.2 14.3 13.5 13.6

06:15:00 14.5 14.5 14.0 NaN 14.5 14.7

06:30:00 14.6 15.1 14.8 15.3 14.0 NaN

06:45:00 14.8 14.5 15.6 15.2 NaN 14.6

07:00:00 15.0 14.9 15.7 15.6 14.0 15.3

07:15:00 NaN 15.2 14.6 15.3 15.5 14.9

07:30:00 15.4 15.3 15.6 15.6 14.7 NaN

07:45:00 15.5 14.8 15.4 15.5 14.6 14.9

08:00:00 15.7 15.6 15.9 16.2 15.4 15.4

08:15:00 15.9 15.8 15.9 NaN 16.0 16.2
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'dropna' can also be used to drop all columns in which some values are NaN. This can be achieved by
assigning 1 to the axis parameter. The default value is False, as we have seen in our previous example. As
every column from our sensors contain NaN values, they will all disappear:

df = disturbed_data.dropna(axis=1)

Output:

sensor1 sensor2 sensor3 sensor4 sensor5 sensor6

time

06:00:00 14.3 13.7 14.2 14.3 13.5 13.6

07:00:00 15.0 14.9 15.7 15.6 14.0 15.3

07:45:00 15.5 14.8 15.4 15.5 14.6 14.9

08:00:00 15.7 15.6 15.9 16.2 15.4 15.4

09:45:00 18.4 19.0 19.0 19.4 18.4 18.3

10:00:00 19.0 19.7 18.8 18.9 17.5 18.9

11:45:00 24.2 23.1 25.3 23.7 24.5 24.8

12:15:00 23.8 23.7 24.8 25.1 22.2 22.4

12:45:00 23.4 22.6 23.7 24.4 21.8 23.8

15:00:00 21.8 22.9 22.2 22.8 21.0 21.9

16:00:00 21.1 21.6 20.7 20.6 19.9 21.4

17:00:00 20.4 19.5 20.3 21.8 19.9 19.2

17:15:00 20.3 20.7 19.6 21.3 19.8 19.0

17:45:00 19.9 20.4 19.4 21.1 20.0 20.5

18:15:00 19.6 19.9 19.2 19.9 20.0 18.6

18:30:00 19.5 19.1 19.2 19.7 18.3 18.3
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df[:5]

Let us change our task: We only want to get rid of all the rows, which contain more than one NaN value. The
parameter 'thresh' is ideal for this task. It can be set to the minimum number. 'thresh' is set to an integer value,
which defines the minimum number of non-NaN values. We have six temperature values in every row. Setting
'thresh' to 5 makes sure that we will have at least 5 valid floats in every remaining row:

cleansed_df = disturbed_data.dropna(thresh=5, axis=0)
cleansed_df[:7]

Output:

time

06:00:00

06:15:00

06:30:00

06:45:00

07:00:00

Output:

sensor1 sensor2 sensor3 sensor4 sensor5 sensor6

time

06:00:00 14.3 13.7 14.2 14.3 13.5 13.6

06:15:00 14.5 14.5 14.0 NaN 14.5 14.7

06:30:00 14.6 15.1 14.8 15.3 14.0 NaN

06:45:00 14.8 14.5 15.6 15.2 NaN 14.6

07:00:00 15.0 14.9 15.7 15.6 14.0 15.3

07:15:00 NaN 15.2 14.6 15.3 15.5 14.9

07:30:00 15.4 15.3 15.6 15.6 14.7 NaN
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Now we will calculate the mean values again, but this time on the DataFrame 'cleansed_df', i.e. where we have
taken out all the rows, where more than one NaN value occurred.

average_temp_series = cleansed_df.mean(axis=1)
sensors = cleansed_df.columns.values
df = cleansed_df.drop(sensors, axis=1)

# best practice:
df = df.assign(temperature=average_temp_series) # inplace option
not available
df[:6]

Output:

temperature

time

06:00:00 13.933333

06:15:00 14.440000

06:30:00 14.760000

06:45:00 14.940000

07:00:00 15.083333

07:15:00 15.100000
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B I N N I N G  I N  P Y T H O N  A N D  P A N D A S

INTRODUCTION

Data binning, which is also known as bucketing or
discretization, is a technique used in data processing and
statistics. Binning can be used for example, if there are
more possible data points than observed data points. An
example is to bin the body heights of people into intervals
or categories. Let us assume, we take the heights of 30
people. The length values can be between - roughly
guessing - 1.30 metres to 2.50 metres. Theoretically, there
are 120 different cm values possible, but we can have at
most 30 different values from our sample group. One way
to group them could be to put the measured values into
bins ranging from 1.30 - 1.50 metres, 1.50 - 1.70 metres,
1.70 - 1.90 metres and so on. This means that the original
data values, will be assigned to a bin into wich they fit
according to their size. The original values will be
replaced by values representing the corresponding intervals. Binning is a form of quantization.

Bins do not necessarily have to be numerical, they can be categorical values of any kind, like "dogs", "cats",
"hamsters", and so on.

Binning is also used in image processing, binning. It can be used to reduce the amount of data, by combining
neighboring pixel into single pixels. kxk binning reduces areas of k x k pixels into single pixel.

Pandas provides easy ways to create bins and to bin data. Before we describe these Pandas functionalities, we
will introduce basic Python functions, working on Python lists and tuples.

BINNING IN PYTHON

The following Python function can be used to create bins.

def create_bins(lower_bound, width, quantity):
""" create_bins returns an equal-width (distance) partitionin

g.
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It returns an ascending list of tuples, representing the i
ntervals.

A tuple bins[i], i.e. (bins[i][0], bins[i][1])  with i >
0

and i < quantity, satisfies the following conditions:
(1) bins[i][0] + width == bins[i][1]
(2) bins[i-1][0] + width == bins[i][0] and

bins[i-1][1] + width == bins[i][1]
"""

bins = []
for low in range(lower_bound,

lower_bound + quantity*width + 1, width):
bins.append((low, low+width))

return bins

We will create now five bins (quantity=5) with a width of 10 (width=10) starting from 10 (lower_bound=10):

bins = create_bins(lower_bound=10,
width=10,
quantity=5)

bins

The next function 'find_bin' is called with a list or tuple of bin 'bins', which have to be two-tuples or lists of
two elements. The function finds the index of the interval, where the value 'value' is contained:

def find_bin(value, bins):
""" bins is a list of tuples, like [(0,20), (20, 40), (40, 6

0)],
binning returns the smallest index i of bins so that
bin[i][0] <= value < bin[i][1]

"""

for i in range(0, len(bins)):
if bins[i][0] <= value < bins[i][1]:

return i
return -1

from collections import Counter

Output: [(10, 20), (20, 30), (30, 40), (40, 50), (50, 60), (60, 70)]
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bins = create_bins(lower_bound=50,
width=4,
quantity=10)

print(bins)

weights_of_persons = [73.4, 69.3, 64.9, 75.6, 74.9, 80.3,
78.6, 84.1, 88.9, 90.3, 83.4, 69.3,
52.4, 58.3, 67.4, 74.0, 89.3, 63.4]

binned_weights = []

for value in weights_of_persons:
bin_index = find_bin(value, bins)
print(value, bin_index, bins[bin_index])
binned_weights.append(bin_index)

frequencies = Counter(binned_weights)
print(frequencies)
[(50, 54), (54, 58), (58, 62), (62, 66), (66, 70), (70, 74), (74,
78), (78, 82), (82, 86), (86, 90), (90, 94)]
73.4 5 (70, 74)
69.3 4 (66, 70)
64.9 3 (62, 66)
75.6 6 (74, 78)
74.9 6 (74, 78)
80.3 7 (78, 82)
78.6 7 (78, 82)
84.1 8 (82, 86)
88.9 9 (86, 90)
90.3 10 (90, 94)
83.4 8 (82, 86)
69.3 4 (66, 70)
52.4 0 (50, 54)
58.3 2 (58, 62)
67.4 4 (66, 70)
74.0 6 (74, 78)
89.3 9 (86, 90)
63.4 3 (62, 66)
Counter({4: 3, 6: 3, 3: 2, 7: 2, 8: 2, 9: 2, 5: 1, 10: 1, 0: 1,
2: 1})
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BINNING WITH PANDAS

The module Pandas of Python provides powerful functionalities for the binning of data. We will demonstrate
this by using our previous data.

BINS USED BY PANDAS

We used a list of tuples as bins in our previous example. We have to turn this list into a usable data structure
for the pandas function "cut". This data structure is an IntervalIndex. We can do this with
pd.IntervalIndex.from_tuples:

import pandas as pd
bins2 = pd.IntervalIndex.from_tuples(bins)

"cut" is the name of the Pandas function, which is needed to bin values into bins. "cut" takes many parameters
but the most important ones are "x" for the actual values und "bins", defining the IntervalIndex. "x" can be any
1-dimensional array-like structure, e.g. tuples, lists, nd-arrays and so on:

categorical_object = pd.cut(weights_of_persons, bins2)
print(categorical_object)

The result of the Pandas function "cut" is a so-called "Categorical object". Each bin is a category. The
categories are described in a mathematical notation. "(70, 74]" means that this bins contains values from 70 to
74 whereas 70 is not included but 74 is included. Mathematically, this is a half-open interval, i.e. nn interval in
which one endpoint is included but not the other. Sometimes it is also called an half-closed interval.

We had also defined the bins in our previous chapter as half-open intervals, but the other way round, i.e. left
side closed and the right side open. When we used pd.IntervalIndex.from_tuples, we could have defined the
"openness" of this bins by setting the parameter "closed" to one of the values:

• 'left': closed on the left side and open on the right
• 'right': (The default) open on the left side and closed on the right
• 'both': closed on both sides
• 'neither': open on both sides

To have the same behaviour as in our previous chapter, we will set the parameter closed to "left":

bins2 = pd.IntervalIndex.from_tuples(bins, closed="left")

[(70, 74], (66, 70], (62, 66], (74, 78], (74, 78], ..., (58, 62],
(66, 70], (70, 74], (86, 90], (62, 66]]
Length: 18
Categories (11, interval[int64]): [(50, 54] < (54, 58] < (58, 62]
< (62, 66] ... (78, 82] < (82, 86] < (86, 90] < (90, 94]]
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categorical_object = pd.cut(weights_of_persons, bins2)
print(categorical_object)

OTHER WAYS TO DEFINE BINS

We used an IntervalIndex as a bin for binning the weight data. The function "cut" can also cope with two other
kinds of bin representations:

• an integer:
defining the number of equal-width bins in the range of the values "x". The

range of "x" is extended by .1% on each side to includ
e the minimum

and maximum values of "x".

• sequence of scalars:
Defines the bin edges allowing for non-uniform

width. No extension of the range of "x" is done.

categorical_object = pd.cut(weights_of_persons, 18)

print(categorical_object)

sequence_of_scalars = [ x[0] for x in bins]
sequence_of_scalars.append(bins[-1][1])
print(sequence_of_scalars)
categorical_object = pd.cut(weights_of_persons,

sequence_of_scalars,
right=False)

print(categorical_object)

[[70, 74), [66, 70), [62, 66), [74, 78), [74, 78), ..., [58, 62),
[66, 70), [74, 78), [86, 90), [62, 66)]
Length: 18
Categories (11, interval[int64]): [[50, 54) < [54, 58) < [58, 62)
< [62, 66) ... [78, 82) < [82, 86) < [86, 90) < [90, 94)]

[(71.35, 73.456], (69.244, 71.35], (62.928, 65.033], (75.561, 77.6
67], (73.456, 75.561], ..., (56.611, 58.717], (67.139, 69.244], (7
3.456, 75.561], (88.194, 90.3], (62.928, 65.033]]
Length: 18
Categories (18, interval[float64]): [(52.362, 54.506] < (54.506, 5
6.611] < (56.611, 58.717] < (58.717, 60.822] ... (81.878, 83.983]
< (83.983, 86.089] < (86.089, 88.194] < (88.194, 90.3]]
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BIN COUNTS AND VALUE COUNTS

The next and most interesting question is now how we can see the actual bin counts. This can be accomplished
with the function "value_counts":

pd.value_counts(categorical_object)

"categorical_object.codes" provides you with a labelling of the input values into the binning categories:

labels = categorical_object.codes
labels

categories is the IntervalIndex of the categories of the label indices:

categories = categorical_object.categories
categories

[50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94]
[[70, 74), [66, 70), [62, 66), [74, 78), [74, 78), ..., [58, 62),
[66, 70), [74, 78), [86, 90), [62, 66)]
Length: 18
Categories (11, interval[int64]): [[50, 54) < [54, 58) < [58, 62)
< [62, 66) ... [78, 82) < [82, 86) < [86, 90) < [90, 94)]

Output: [74, 78)    3
[66, 70)    3
[86, 90)    2
[82, 86)    2
[78, 82)    2
[62, 66)    2
[90, 94)    1
[70, 74)    1
[58, 62)    1
[50, 54)    1
[54, 58)    0
dtype: int64

Output: array([ 5,  4,  3,  6,  6,  7,  7,  8,  9, 10,  8,  4,  0,
2,  4,  6,  9,

3], dtype=int8)
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Correspondence from weights data to bins:

for index in range(len(weights_of_persons)):
label_index = labels[index]
print(weights_of_persons[index], label_index, categories[labe

l_index] )

categorical_object.categories

NAMING BINS

Let's imagine, we have an University, which confers three levels of Latin honors depending on the grade point
average (GPA):

• "summa cum laude" requires a GPA above 3.9
• "magna cum laude" if the GPA is above 3.8

Output: IntervalIndex([[50, 54), [54, 58), [58, 62), [62, 66), [66, 7
0) ... [74, 78), [78, 82), [82, 86), [86, 90), [90, 94)],

closed='left',
dtype='interval[int64]')

73.4 5 [70, 74)
69.3 4 [66, 70)
64.9 3 [62, 66)
75.6 6 [74, 78)
74.9 6 [74, 78)
80.3 7 [78, 82)
78.6 7 [78, 82)
84.1 8 [82, 86)
88.9 9 [86, 90)
90.3 10 [90, 94)
83.4 8 [82, 86)
69.3 4 [66, 70)
52.4 0 [50, 54)
58.3 2 [58, 62)
67.4 4 [66, 70)
74.0 6 [74, 78)
89.3 9 [86, 90)
63.4 3 [62, 66)

Output: IntervalIndex([[50, 54), [54, 58), [58, 62), [62, 66), [66, 7
0) ... [74, 78), [78, 82), [82, 86), [86, 90), [90, 94)],

closed='left',
dtype='interval[int64]')
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• "cum laude" if the GPA of 3.6 or above

degrees = ["none", "cum laude", "magna cum laude", "summa cum laud
e"]
student_results = [3.93, 3.24, 2.80, 2.83, 3.91, 3.698, 3.731, 3.2
5, 3.24, 3.82, 3.22]

student_results_degrees = pd.cut(student_results, [0, 3.6, 3.8,
3.9, 4.0], labels=degrees)
pd.value_counts(student_results_degrees)

Let's have a look at the individual degrees of each student:

labels = student_results_degrees.codes
categories = student_results_degrees.categories

for index in range(len(student_results)):
label_index = labels[index]
print(student_results[index], label_index, categories[label_in

dex] )

Output: none               6
summa cum laude    2
cum laude          2
magna cum laude    1
dtype: int64

3.93 3 summa cum laude
3.24 0 none
2.8 0 none
2.83 0 none
3.91 3 summa cum laude
3.698 1 cum laude
3.731 1 cum laude
3.25 0 none
3.24 0 none
3.82 2 magna cum laude
3.22 0 none
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P A N D A S  T U T O R I A L :  M U L T I - L E V E L
I N D E X I N G

INTRODUCTION

We learned the basic concepts of Pandas
in our previous chapter of our tutorial on
Pandas. We introduced the data structures

• Series and
• DataFrame

We also learned how to create and manipulate the Series and DataFrame objects in numerous Python
programs.

Now it is time to learn some further aspects of theses data structures in this chapter of our tutorial.

We will start with advanced indexing possibilities in Pandas.

ADVANCED OR MULTI-LEVEL INDEXING

Advanced or multi-level indexing is available both for Series and for DataFrames. It is a fascinating way of
working with higher dimensional data, using Pandas data structures. It's an efficient way to store and
manipulate arbitrarily high dimension data in 1-dimensional (Series) and 2-dimensional tabular (DataFrame)
structures. In other words, we can work with higher dimensional data in lower dimensions. It's time to present
an example in Python:

import pandas as pd
cities = ["Vienna", "Vienna", "Vienna",

"Hamburg", "Hamburg", "Hamburg",
"Berlin", "Berlin", "Berlin",
"Zürich", "Zürich", "Zürich"]

index = [cities, ["country", "area", "population",
"country", "area", "population",
"country", "area", "population",
"country", "area", "population"]]

print(index)
[['Vienna', 'Vienna', 'Vienna', 'Hamburg', 'Hamburg', 'Hamburg',
'Berlin', 'Berlin', 'Berlin', 'Zürich', 'Zürich', 'Zürich'], ['cou
ntry', 'area', 'population', 'country', 'area', 'population', 'cou
ntry', 'area', 'population', 'country', 'area', 'population']]
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data = ["Austria", 414.60, 1805681,
"Germany", 755.00, 1760433,
"Germany", 891.85, 3562166,
"Switzerland", 87.88, 378884]

city_series = pd.Series(data, index=index)
print(city_series)

We can access the data of a city in the following way:

print(city_series["Vienna"])

We can also access the information about the country, area or population of a city. We can do this in two ways:

print(city_series["Vienna"]["area"])

The other way to accomplish it:

print(city_series["Vienna", "area"])

We can also get the content of multiple cities at the same time by using a list of city names as the key:

Vienna   country           Austria
area                414.6
population        1805681

Hamburg  country           Germany
area                  755
population        1760433

Berlin   country           Germany
area               891.85
population        3562166

Zürich   country       Switzerland
area                87.88
population         378884

dtype: object

country       Austria
area            414.6
population    1805681
dtype: object

414.6

414.6

PANDAS TUTORIAL: MULTI-LEVEL INDEXING 413



city_series["Hamburg",:]

If the index is sorted, we can also apply a slicing operation:

city_series = city_series.sort_index()
print("city_series with sorted index:")
print(city_series)

print("\n\nSlicing the city_series:")
city_series["Berlin":"Vienna"]

Output: country       Germany
area              755
population    1760433
dtype: object

city_series with sorted index:
Berlin   area               891.85

country           Germany
population        3562166

Hamburg  area                  755
country           Germany
population        1760433

Vienna   area                414.6
country           Austria
population        1805681

Zürich   area                87.88
country       Switzerland
population         378884

dtype: object

Slicing the city_series:
Output: Berlin   area           891.85

country       Germany
population    3562166

Hamburg  area              755
country       Germany
population    1760433

Vienna   area            414.6
country       Austria
population    1805681

dtype: object
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In the next example, we show that it is possible to access the inner keys as well:

print(city_series[:, "area"])

SWAPPING MULTIINDEX LEVELS

It is possible to swap the levels of a MultiIndex with the method swaplevel:

swaplevel(self, i=-2, j=-1, copy=True)
Swap levels i and j in a MultiIndex

Parameters
----------
i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.
The indexes 'i' and 'j' are optional, and default to
the two innermost levels of the index

Returns
-------
swapped : Series

city_series = city_series.swaplevel()
city_series.sort_index(inplace=True)
city_series

Berlin     891.85
Hamburg       755
Vienna      414.6
Zürich      87.88
dtype: object
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Output: area        Berlin          891.85
Hamburg            755
Vienna           414.6
Zürich           87.88

country     Berlin         Germany
Hamburg        Germany
Vienna         Austria
Zürich     Switzerland

population  Berlin         3562166
Hamburg        1760433
Vienna         1805681
Zürich          378884

dtype: object
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DATA VISUALIZATION WITH
PANDAS

INTRODUCTION
It is seldom a good idea to
present your scientific or
business data solely in rows
and columns of numbers. We
rather use various kinds of
diagrams to visualize our
data. This makes the
communication of information
more efficiently and easy to
grasp. In other words, it
makes complex data more
accessible and understandable.
The numerical data can be
graphically encoded with line
charts, bar charts, pie
charts, histograms,
scatterplots and others.

We have already seen the powerful capabilities of for creating publication-
quality plots. Matplotlib is a low-level tool to achieve this goal, because you
have to construe your plots by adding up basic components, like legends, tick
labels, contours and so on.
Pandas provides various plotting possibilities, which make like a lot easier.

We will start with an example for a line plot.

LINE PLOT IN PANDAS

SERIES

Both the Pandas Series and DataFrame objects support a plot method.

You can see a simple example of a line plot with for a Series object. We use a
simple Python list "data" as the data for the range. The index will be used for
the x values, or the domain.

import pandas as pd
data = [100, 120, 140, 180, 200, 210, 214]
s = pd.Series(data, index=range(len(data)))
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s.plot()

It is possible to suppress the usage of the index by setting the keyword
parameter "use_index" to False. In our example this will give us the same result:

s.plot(use_index=False)

We will experiment now with a Series which has an index consisting of
alphabetical values.

fruits = ['apples', 'oranges', 'cherries', 'pears']
quantities = [20, 33, 52, 10]
S = pd.Series(quantities, index=fruits)
S.plot()

LINE PLOTS IN DATAFRAMES

We will introduce now the plot method of a DataFrame. We define a dcitionary with
the population and area figures.  This dictionary can be used to create the
DataFrame, which we want to use for plotting:

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe98be8a710>

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe98be8a710>

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe98be8a710>
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import pandas as pd
cities = {"name": ["London", "Berlin", "Madrid", "Rome",

"Paris", "Vienna", "Bucharest", "Hamburg",
"Budapest", "Warsaw", "Barcelona",
"Munich", "Milan"],

"population": [8615246, 3562166, 3165235, 2874038,
2273305, 1805681, 1803425, 1760433,
1754000, 1740119, 1602386, 1493900,
1350680],

"area" : [1572, 891.85, 605.77, 1285,
105.4, 414.6, 228, 755,
525.2, 517, 101.9, 310.4,
181.8]

}

city_frame = pd.DataFrame(cities,
columns=["population", "area"],
index=cities["name"])

print(city_frame)

The following code plots our DataFrame city_frame. We will multiply the area
column by 1000, because otherwise the "area" line would not be visible or in
other words would be overlapping with the x axis:

population     area
London        8615246  1572.00
Berlin        3562166   891.85
Madrid        3165235   605.77
Rome          2874038  1285.00
Paris         2273305   105.40
Vienna        1805681   414.60
Bucharest     1803425   228.00
Hamburg       1760433   755.00
Budapest      1754000   525.20
Warsaw        1740119   517.00
Barcelona     1602386   101.90
Munich        1493900   310.40
Milan         1350680   181.80
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city_frame["area"] *= 1000
city_frame.plot()

This plot is not coming up to our expectations, because not all the city names
appear on the x axis. We can change this by defining the xticks explicitly with
"range(len((city_frame.index))". Furthermore, we have to set use_index to True,
so that we get city names and not numbers from 0 to len((city_frame.index):

city_frame.plot(xticks=range(len(city_frame.index)),
use_index=True)

Now, we have a new problem. The city names are overlapping. There is remedy at
hand for this problem as well. We can rotate the strings  by 90 degrees. The
names will be printed vertically afterwards:

city_frame.plot(xticks=range(len(city_frame.index)),
use_index=True,
rot=90)

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe9b13f2c50>

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe983cd72e8>

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe98bbf6c88>
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USING TWIN AXES

We multiplied the area column by 1000 to get a proper output. Instead of this, we
could have used twin axes. We will demonstrate this in the following example. We
will recreate the city_frame DataFrame to get the original area column:

city_frame = pd.DataFrame(cities,
columns=["population", "area"],
index=cities["name"])

print(city_frame)

To get a twin axes represenation of our diagram, we need subplots from the module
matplotlib and the function "twinx":

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fig.suptitle("City Statistics")
ax.set_ylabel("Population")
ax.set_xlabel("Cities")

ax2 = ax.twinx()
ax2.set_ylabel("Area")

population     area
London        8615246  1572.00
Berlin        3562166   891.85
Madrid        3165235   605.77
Rome          2874038  1285.00
Paris         2273305   105.40
Vienna        1805681   414.60
Bucharest     1803425   228.00
Hamburg       1760433   755.00
Budapest      1754000   525.20
Warsaw        1740119   517.00
Barcelona     1602386   101.90
Munich        1493900   310.40
Milan         1350680   181.80
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city_frame["population"].plot(ax=ax,
style="b-",
xticks=range(len(city_frame.index)),
use_index=True,
rot=90)

city_frame["area"].plot(ax=ax2,
style="g-",
use_index=True,
rot=90)

ax.legend(["population number"], loc=2)
ax2.legend(loc=1)

plt.show()
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We can also create twin axis directly in Pandas without the aid of Matplotlib. We
demonstrate this in the code of the following program:

import matplotlib.pyplot as plt
ax1= city_frame["population"].plot(style="b-",

xticks=range(len(city_frame.index)),
use_index=True,
rot=90)

ax2 = ax1.twinx()

city_frame["area"].plot(ax=ax2,
style="g-",
use_index=True,
#secondary_y=True,
rot=90)

ax1.legend(loc = (.7,.9), frameon = False)
ax2.legend( loc = (.7, .85), frameon = False)
plt.show()
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MULTIPLE Y AXES

Let's add another axes to our city_frame. We will add a column with the
population density, i.e. the number of people per square kilometre:

city_frame["density"] = city_frame["population"] / city_frame["area"]

city_frame
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Output:

population area density

London 8615246 1572.00 5480.436387

Berlin 3562166 891.85 3994.131300

Madrid 3165235 605.77 5225.143206

Rome 2874038 1285.00 2236.605447

Paris 2273305 105.40 21568.358634

Vienna 1805681 414.60 4355.236372

Bucharest 1803425 228.00 7909.758772

Hamburg 1760433 755.00 2331.699338

Budapest 1754000 525.20 3339.680122

Warsaw 1740119 517.00 3365.800774

Barcelona 1602386 101.90 15725.083415

Munich 1493900 310.40 4812.822165

Milan 1350680 181.80 7429.482948
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Now we have three columns to plot. For this purpose, we will create three axes
for our values:

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
fig.suptitle("City Statistics")
ax.set_ylabel("Population")
ax.set_xlabel("Citites")

ax_area, ax_density = ax.twinx(), ax.twinx()
ax_area.set_ylabel("Area")
ax_density.set_ylabel("Density")

rspine = ax_density.spines['right']
rspine.set_position(('axes', 1.25))
ax_density.set_frame_on(True)
ax_density.patch.set_visible(False)
fig.subplots_adjust(right=0.75)

city_frame["population"].plot(ax=ax,
style="b-",
xticks=range(len(city_frame.index)),
use_index=True,
rot=90)

city_frame["area"].plot(ax=ax_area,
style="g-",
use_index=True,
rot=90)

city_frame["density"].plot(ax=ax_density,
style="r-",
use_index=True,
rot=90)

plt.show()
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A MORE COMPLEX EXAMPLE
We use the previously gained knowledge in the following example. We use a file
with visitor statistics from our website python-course.eu. The content of the
file looks like this:

Month Year  "Unique visitors"   "Number of visits"  Pages   Hits    Bandwid
th Unit
Jun 2010    11  13  42  290 2.63 MB
Jul 2010    27  39  232 939 9.42 MB
Aug 2010    75  87  207 1,096   17.37 MB
Sep 2010    171 221 480 2,373   39.63 MB

...

Apr 2018    434,346 663,327 1,143,762   7,723,268   377.56 GB
May 2018    402,390 619,993 1,124,517   7,307,779   394.72 GB
Jun 2018    369,739 573,102 1,034,335   6,773,820   386.60 GB
Jul 2018    352,670 552,519   967,778   6,551,347   375.86 GB
Aug 2018    407,512 642,542 1,223,319   7,829,987   472.37 GB
Sep 2018    463,937 703,327 1,187,224   8,468,723   514.46 GB
Oct 2018    537,343 826,290 1,403,176  10,013,025   620.55 GB
Nov 2018    514,072 781,335 1,295,594   9,487,834   642.16 GB
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%matplotlib inline

import pandas as pd
data_path = "data1/"
data = pd.read_csv(data_path + "python_course_monthly_history.txt",

quotechar='"',
thousands=",",
delimiter=r"\s+")

def unit_convert(x):
value, unit = x
if unit == "MB":

value *= 1024
elif unit == "GB":

value *= 1048576 # i.e. 1024 **2
return value

b_and_u= data[["Bandwidth", "Unit"]]
bandwidth = b_and_u.apply(unit_convert, axis=1)

del data["Unit"]
data["Bandwidth"] = bandwidth

month_year = data[["Month", "Year"]]
month_year = month_year.apply(lambda x: x[0] + " " + str(x[1]),

axis=1)
data["Month"] = month_year
del data["Year"]

data.set_index("Month", inplace=True)
del data["Bandwidth"]

data[["Unique visitors", "Number of visits"]].plot(use_index=True,
rot=90,
xticks=range(1, len(da

ta.index),4))
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ratio = pd.Series(data["Number of visits"] / data["Unique visitors"],
index=data.index)

ratio.plot(use_index=True,
xticks=range(1, len(ratio.index),4),
rot=90)

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe9836b27b8>
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CONVERTING STRING COLUMNS TO FLOATS

In the folder "data1", we have a file called

"tiobe_programming_language_usage_nov2018.txt"

with a ranking of programming languages by usage. The data has been collected and
created by TIOBE in November 2018.

The file looks like this:

Position    "Language"  Percentage
1       Java    16.748%
2       C   14.396%
3       C++ 8.282%
4       Python  7.683%
5       "Visual Basic .NET" 6.490%
6       C#  3.952%
7       JavaScript  2.655%
8       PHP 2.376%
9       SQL 1.844%

The percentage column contains strings with a percentage sign. We can get rid of
this when we read in the data with read_csv. All we have to do is define a
converter function, which we to read_csv via the converters dictionary, which
contains column names as keys and references to functions as values.

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe9838e5860>
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def strip_percentage_sign(x):
return float(x.strip('%'))

data_path = "data1/"
progs = pd.read_csv(data_path + "tiobe_programming_language_usage_nov201
8.txt",

quotechar='"',
thousands=",",
index_col=1,
converters={'Percentage':strip_percentage_sign},
delimiter=r"\s+")

del progs["Position"]

print(progs.head(6))
progs.plot(xticks=range(1, len(progs.index)),

use_index=True, rot=90)

plt.show()
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BAR PLOTS IN PANDAS
To create bar plots with Pandas is as easy as plotting line plots. All we have to
do is add the keyword parameter "kind" to the plot method and set it to "bar".

A SIMPLE EXAMPLE

import pandas as pd
data = [100, 120, 140, 180, 200, 210, 214]
s = pd.Series(data, index=range(len(data)))

s.plot(kind="bar")

Percentage
Language
Java                   16.748
C                      14.396
C++                     8.282
Python                  7.683
Visual Basic .NET       6.490
C#                      3.952
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BAR PLOT FOR PROGRAMMING LANGUAGE USAGE

Let's get back to our programming language ranking. We will printout now a bar
plot of the six most used programming languages:

progs[:6].plot(kind="bar")

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe98349a5c0>
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Now the whole chart with all programming languages:

progs.plot(kind="bar")

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe983ac05c0>
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COLORIZE A BAR PLOT

It is possible to colorize the bars indivually by assigning a list to the keyword
parameter color:

my_colors = ['b', 'r', 'c', 'y', 'g', 'm']
progs[:6].plot(kind="bar",

color=my_colors)

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe983a84208>
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PIE CHART DIAGRAMS IN PANDAS
A simple example:

import pandas as pd
fruits = ['apples', 'pears', 'cherries', 'bananas']
series = pd.Series([20, 30, 40, 10],

index=fruits,
name='series')

series.plot.pie(figsize=(6, 6))

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe9834509e8>
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fruits = ['apples', 'pears', 'cherries', 'bananas']

series = pd.Series([20, 30, 40, 10],
index=fruits,
name='series')

explode = [0, 0.10, 0.40, 0.7]
series.plot.pie(figsize=(6, 6),

explode=explode)

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe9832fe048>
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We will replot the previous bar plot as a pie chart plot:

import matplotlib.pyplot as plt
my_colors = ['b', 'r', 'c', 'y', 'g', 'm']
progs.plot.pie(subplots=True,

legend=False)

Output: <matplotlib.axes._subplots.AxesSubplot at 0x7fe983370198>
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It looks ugly that we see the y label "Percentage" inside our pie plot. We can
remove it by calling "plt.ylabel('')"

import matplotlib.pyplot as plt
my_colors = ['b', 'r', 'c', 'y', 'g', 'm']
progs.plot.pie(subplots=True,

legend=False)
plt.ylabel('')

Output: array([<matplotlib.axes._subplots.AxesSubplot object at 0x7fe983244
0b8>], dtype=object)
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Output: <matplotlib.text.Text at 0x7fe983117b70>
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PYTHON, DATE AND TIME

INTRODUCTION
Python provides rich
functionalities for dealing
with date and time data. The
standard libraries contains
the modules

• time
• calendar
• datetime

These modules supply classes
for manipulating dates and
times in both simple and
complex ways.

Especially, the datetime class
will be very important for the
timeseries of Pandas.

PYTHON STANDARD
MODULES FOR TIME DATA
The most important modules of
Python dealing with time are
the modules time ,
calendar and datetime .

The datetime module provides
various classes, methods and
functions to deal with dates,
times, and time intervals.

The datetime module provides
the following classes:

• The instances of the date class represent dates, whereas the year can
range between 1 and 9999.

• The instances of the datetime class are made up both by a date and a
time.

• The time class implements time objects.
• The timedelta class is used to hold the differences between two times

or two date objects.
• The tzinfo class is used to implement timezone support for time and

datetime objects.

Let's start with a date object.
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THE DATE CLASS

from datetime import date

x = date(1993, 12, 14)
print(x)

We can instantiate dates in the range from January 1, 1 to December 31, 9999.
This can be inquired from the attributes min and max :

from datetime import date

print(date.min)
print(date.max)

We can apply various methods to the date instance above.
The method toordinal returns the proleptic Gregorian ordinal. The proleptic
Gregorian calendar is produced by extending the Gregorian calendar backward to
dates preceding its official introduction in 1582. January 1 of year 1 is day 1.

x.toordinal()

1993-12-14

0001-01-01
9999-12-31
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It is possible to calculate a date from a ordinal by using the class method
"fromordinal":

date.fromordinal(727911)

If you want to know the weekday of a certain date, you can calculate it by using
the method weekday:

x.weekday()

date.today()

We can access the day, month and year with attributes:

Output: 727911

Output: datetime.date(1993, 12, 14)

Output: 1

Output: datetime.date(2017, 4, 12)
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print(x.day)
print(x.month)
print(x.year)

THE TIME CLASS

The time class is similarly organized than the date class.

from datetime import time

t = time(15, 6, 23)
print(t)

The possible times range between:

print(time.min)
print(time.max)

14
12
1993

15:06:23

00:00:00
23:59:59.999999
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Accessing 'hour', 'minute' and 'second':

t.hour, t.minute, t.second

Each component of a time instance can be changed by using 'replace':

t = t.replace(hour=11, minute=59)
t

We can render a date as a C-style like string, corresponding to the C ctime
function:

x.ctime()

THE DATETIME CLASS
The datetime module provides us with functions and methods  for manipulating
dates and times. It supplies functionalities for date and time arithmetic, i.e.

Output: (15, 6, 23)

Output: datetime.time(11, 59, 23)

Output: 'Tue Dec 14 00:00:00 1993'

PYTHON, DATE AND TIME 448



addition and subtraction. Another focus of the implementation is on attribute
extraction for output manipulation and formatting.

There are two kinds of date and time objects:

• naive
• aware

If a time or date object is naive it doesn't contain information to compare or
locate itself relative to other date or time objects. The semantics, if such a
naive object belongs to a certain time zone, e.g. Coordinated Universal Time
(UTC), local time, or some other timezone is contained in the logic of the
program.

An aware object on the other hand possesses knowledge of the time zone it belongs
to or the daylight saving time information. This way it can locate itself
relative to other aware objects.

How can you tell if a datetime object t is aware?

t is aware if t.tzinfo is not None and t.tzinfo.utcoffset(t) is not None.
Both conditions have to be fulfilled

On the other hand an object t is naive if t.tzinfo is None or
t.tzinfo.utcoffset(t) is None

Let's create a datetime object:

from datetime import datetime
t = datetime(2017, 4, 19, 16, 31, 0)
t

t is naive, because the following is True:

t.tzinfo == None

Output: datetime.datetime(2017, 4, 19, 16, 31)
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We will create an aware datetime object from the current date. For this purpose
we need the module pytz. pytz is a module, which brings the Olson tz database
into Python.  The Olson timezones are nearly completely supported by this module.

from datetime import datetime
import pytz
t = datetime.now(pytz.utc)

We can see that both t.tzinfo and t.tzinfo.utcoffset(t) are different from None,
so t is an aware object:

t.tzinfo, t.tzinfo.utcoffset(t)

from datetime import datetime, timedelta as delta
ndays = 15
start = datetime(1991, 4, 30)
dates = [start - delta(days=x) for x in range(0, ndays)]
dates

Output: True

Output: (<UTC>, datetime.timedelta(0))
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DIFFERENCES BETWEEN TIMES
Let's see what happens, if we subtract to datetime objects:

from datetime import datetime

delta = datetime(1993, 12, 14) - datetime(1991, 4, 30)
delta, type(delta)

The result of the subtraction of the two datetime objects is a timedelta object,
as we can see from the example above.

We can get information about the number of days elapsed by using the attribute
'days':

delta.days

Output: [datetime.datetime(1991, 4, 30, 0, 0),
datetime.datetime(1991, 4, 29, 0, 0),
datetime.datetime(1991, 4, 28, 0, 0),
datetime.datetime(1991, 4, 27, 0, 0),
datetime.datetime(1991, 4, 26, 0, 0),
datetime.datetime(1991, 4, 25, 0, 0),
datetime.datetime(1991, 4, 24, 0, 0),
datetime.datetime(1991, 4, 23, 0, 0),
datetime.datetime(1991, 4, 22, 0, 0),
datetime.datetime(1991, 4, 21, 0, 0),
datetime.datetime(1991, 4, 20, 0, 0),
datetime.datetime(1991, 4, 19, 0, 0),
datetime.datetime(1991, 4, 18, 0, 0),
datetime.datetime(1991, 4, 17, 0, 0),
datetime.datetime(1991, 4, 16, 0, 0)]

Output: (datetime.timedelta(959), datetime.timedelta)
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t1 = datetime(2017, 1, 31, 14, 17)
t2 = datetime(2015, 12, 15, 16, 59)
delta = t1 - t2
delta.days, delta.seconds

It is possible to add or subtract a timedelta to a
datetime object to calculate a new datetime object by adding or subtracting the
delta in days:

from datetime import datetime, timedelta
d1 = datetime(1991, 4, 30)
d2 = d1 + timedelta(10)
print(d2)
print(d2 - d1)

d3 = d1 - timedelta(100)
print(d3)
d4 = d1 - 2 * timedelta(50)
print(d4)

Output: 959

Output: (412, 76680)

1991-05-10 00:00:00
10 days, 0:00:00
1991-01-20 00:00:00
1991-01-20 00:00:00
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It is also possible to add days and minutes to t datetime object:

from datetime import datetime, timedelta
d1 = datetime(1991, 4, 30)
d2 = d1 + timedelta(10,100)
print(d2)
print(d2 - d1)

CONVERT DATETIME OBJECTS TO STRINGS

The easiest way to convert a datetime object into a string consists in using str.

s = str(d1)
s

CONVERSION WITH STRFTIME

The method call datetime.strftime(format) return a string representing the date
and time, controlled by an explicit format string. A complete list of formatting
directives can be found at strftime:

print(d1.strftime('%Y-%m-%d'))
print("weekday: " + d1.strftime('%a'))
print("weekday as a full name: " + d1.strftime('%A'))

1991-05-10 00:01:40
10 days, 0:01:40

Output: '1991-04-30 00:00:00'
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# Weekday as a decimal number, where 0 is Sunday
# and 6 is Saturday
print("weekday as a decimal number: " + d1.strftime('%w'))

Formatting months:

# Day of the month as a zero-padded decimal number.
# 01, 02, ..., 31
print(d1.strftime('%d'))
# Month as locale’s abbreviated name.
# Jan, Feb, ..., Dec (en_US);
# Jan, Feb, ..., Dez (de_DE)
print(d1.strftime('%b'))

# Month as locale’s full name.
# January, February, ..., December (en_US);
# Januar, Februar, ..., Dezember (de_DE)
print(d1.strftime('%B'))

# Month as a zero-padded decimal number.
# 01, 02, ..., 12
print(d1.strftime('%m'))

1991-04-30
weekday: Tue
weekday as a full name: Tuesday
weekday as a decimal number: 2

30
Apr
April
04
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CREATING DATETIME OBJECTS FROM STRINGS
We can use strptime to create new datetime object by parsing a string containing
a data and time. The arguments of strptime are the string to be parsed and a
format specification.

from datetime import datetime
t = datetime.strptime("30 Nov 00", "%d %b %y")
print(t)

dt = "2007-03-04T21:08:12"
datetime.strptime( dt, "%Y-%m-%dT%H:%M:%S" )

dt = '12/24/1957 4:03:29 AM'
dt = datetime.strptime(dt, '%m/%d/%Y %I:%M:%S %p')
dt

We can create an English date string on a Linux machine with the Shell command

LC_ALL=en_EN.utf8 date

2000-11-30 00:00:00

Output: datetime.datetime(2007, 3, 4, 21, 8, 12)

Output: datetime.datetime(1957, 12, 24, 4, 3, 29)
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dt = 'Wed Apr 12 20:29:53 CEST 2017'
dt = datetime.strptime(dt, '%a %b %d %H:%M:%S %Z %Y')
print(dt)

Though datetime.strptime is an easy way to parse a date with a known format, it
can be quote complicated and cumbersome to write every time a new specification
string for new date formats.

Using the parse method from dateutil.parser:

from dateutil.parser import parse

parse('2011-01-03')

parse('Wed Apr 12 20:29:53 CEST 2017')

2017-04-12 20:29:53

Output: datetime.datetime(2011, 1, 3, 0, 0)

Output: datetime.datetime(2017, 4, 12, 20, 29, 53, tzinfo=tzlocal())
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PYTHON, PANDAS AND TIME
SERIES

INTRODUCTION
Our next chapter of our Pandas
Tutorial deals with time
series. A time series is a
series of data points, which
are listed (or indexed) in
time order. Usually, a time
series is a sequence of
values, which are equally
spaced points in time.
Everything which consists of
measured data connected with
the corresponding time can be
seen as a time series.
Measurements can be taken
irregularly, but in most cases
time series consist of fixed
frequencies. This means that
data is measured or taken in a
regular pattern, i.e. for
example every 5 milliseconds,
every 10 seconds, or very hour.
Often time series are plotted as line charts.

In this chapter of our tutorial on Python with Pandas, we will introduce the
tools from Pandas dealing with time series. You will learn how to cope with large
time series and how modify time series.

Before you continue reading it might be useful to go through our tutorial on the
standard Python modules dealing with time processing, i.e. datetime, time and
calendar:

TIME SERIES IN PANDAS AND PYTHON
We could define a Pandas Series, which is built with an index consisting of time
stamps.

import numpy as np
import pandas as pd
from datetime import datetime, timedelta as delta
ndays = 10
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start = datetime(2017, 3, 31)
dates = [start - delta(days=x) for x in range(0, ndays)]

values = [25, 50, 15, 67, 70, 9, 28, 30, 32, 12]

ts = pd.Series(values, index=dates)
ts

Let's check the type of the newly created time series:

type(ts)

What does the index of a time series look like? Let's see:

ts.index

Output: 2017-03-31    25
2017-03-30    50
2017-03-29    15
2017-03-28    67
2017-03-27    70
2017-03-26     9
2017-03-25    28
2017-03-24    30
2017-03-23    32
2017-03-22    12
dtype: int64

Output: pandas.core.series.Series
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We will create now another time series:

values2 = [32, 54, 18, 61, 72, 19, 21, 33, 29, 17]

ts2 = pd.Series(values2, index=dates)

It is possible to use arithmetic operations on time series like we did with other
series. We can for example add the two previously created time series:

ts + ts2

Arithmetic mean between both Series, i.e. the values of the series:

Output: DatetimeIndex(['2017-03-31', '2017-03-30', '2017-03-29', '2017-03-2
8',

'2017-03-27', '2017-03-26', '2017-03-25', '2017-03-2
4',

'2017-03-23', '2017-03-22'],
dtype='datetime64[ns]', freq=None)

Output: 2017-03-31     57
2017-03-30    104
2017-03-29     33
2017-03-28    128
2017-03-27    142
2017-03-26     28
2017-03-25     49
2017-03-24     63
2017-03-23     61
2017-03-22     29
dtype: int64
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(ts + ts2) / 2

As with other series the indices don't have to be the same.

import pandas as pd
from datetime import datetime, timedelta as delta

ndays = 10

start = datetime(2017, 3, 31)
dates = [start - delta(days=x) for x in range(0, ndays)]

start2 = datetime(2017, 3, 26)
dates2 = [start2 - delta(days=x) for x in range(0, ndays)]

values = [25, 50, 15, 67, 70, 9, 28, 30, 32, 12]
values2 = [32, 54, 18, 61, 72, 19, 21, 33, 29, 17]

ts = pd.Series(values, index=dates)
ts2 = pd.Series(values2, index=dates2)

ts + ts2

Output: 2017-03-31    28.5
2017-03-30    52.0
2017-03-29    16.5
2017-03-28    64.0
2017-03-27    71.0
2017-03-26    14.0
2017-03-25    24.5
2017-03-24    31.5
2017-03-23    30.5
2017-03-22    14.5
dtype: float64
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CREATE DATE RANGES
The date_range method of the pandas module can be used to generate a
DatetimeIndex:

import pandas as pd
index = pd.date_range('12/24/1970', '01/03/1971')
index

We have passed a start and an end date to date_range in our previous example. It
is also possible to pass only a start or an end date to the function. In this
case, we have to determine the number of periods to generate by setting the
keyword parameter 'periods':

Output: 2017-03-17     NaN
2017-03-18     NaN
2017-03-19     NaN
2017-03-20     NaN
2017-03-21     NaN
2017-03-22    84.0
2017-03-23    93.0
2017-03-24    48.0
2017-03-25    82.0
2017-03-26    41.0
2017-03-27     NaN
2017-03-28     NaN
2017-03-29     NaN
2017-03-30     NaN
2017-03-31     NaN
dtype: float64

Output: DatetimeIndex(['1970-12-24', '1970-12-25', '1970-12-26', '1970-12-2
7',

'1970-12-28', '1970-12-29', '1970-12-30', '1970-12-3
1',

'1971-01-01', '1971-01-02', '1971-01-03'],
dtype='datetime64[ns]', freq='D')
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index = pd.date_range(start='12/24/1970', periods=4)
print(index)

index = pd.date_range(end='12/24/1970', periods=3)
print(index)

We can also create time frequencies, which consists only of business days for
example by setting the keyword parameter 'freq' to the string 'B':

index = pd.date_range('2017-04-07', '2017-04-13', freq="B")
print(index)

In the following example, we create a time frequency which contains the month
ends between two dates. We can see that the year 2016 contained the 29th of
February, because it was a leap year:

DatetimeIndex(['1970-12-24', '1970-12-25', '1970-12-26', '1970-12-27'], d
type='datetime64[ns]', freq='D')

DatetimeIndex(['1970-12-22', '1970-12-23', '1970-12-24'], dtype='datetime
64[ns]', freq='D')

DatetimeIndex(['2017-04-07', '2017-04-10', '2017-04-11', '2017-04-12',
'2017-04-13'],

dtype='datetime64[ns]', freq='B')
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index = pd.date_range('2016-02-25', '2016-07-02', freq="M")
index

Other aliases:

Alias Description

B business day frequency

C custom business day frequency (experimental)

D calendar day frequency

W weekly frequency

M month end frequency

BM business month end frequency

MS month start frequency

BMS business month start frequency

Q quarter end frequency

BQ business quarter endfrequency

QS quarter start frequency

BQS business quarter start frequency

A year end frequency

Output: DatetimeIndex(['2016-02-29', '2016-03-31', '2016-04-30', '2016-05-3
1',

'2016-06-30'],
dtype='datetime64[ns]', freq='M')
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Alias Description

BA business year end frequency

AS year start frequency

BAS business year start frequency

H hourly frequency

T minutely frequency

S secondly frequency

L milliseonds

U microseconds

index = pd.date_range('2017-02-05', '2017-04-13', freq="W-Mon")
index

In [ ]:

Output: DatetimeIndex(['2017-02-06', '2017-02-13', '2017-02-20', '2017-02-2
7',

'2017-03-06', '2017-03-13', '2017-03-20', '2017-03-2
7',

'2017-04-03', '2017-04-10'],
dtype='datetime64[ns]', freq='W-MON')
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EXPENSES AND INCOME EXAMPLE

In this chapter of our Pandas
tutorial we will deal with
simple Expense and Income
tables for private usage. Some
say that if you want to manage
your money successfully you
will have to track your income
and expenses. Monitoring the
flow of money is important to
understand your financial
situation. You need to know
exactly how much is coming in
and going out. This article is
not meant to convince you of
the necessity of doing this.
The main focus is rather on
the possibilities offered by
Python and Pandas to program
the necessary tools.

We will start with a small
example, suitable for private
purposes and the following
chapter of our tutorial
continues with a more
extensive example suitable for
small businesses.

PRIVATE BUDGETING WITH
PYTHON AND PANDAS
Let us assume that you have already a csv file containing your expenses and
income over a certain period of time. This journal may look like this:

Date;Description;Category;Out;In
2020-06-02;Salary Frank;Income;0;4896.44
2020-06-03;supermarket;food and beverages;132.40;0
2020-06-04;Salary Laura;Income;0;4910.14
2929-06-04;GreenEnergy Corp., (electricity);utility;87.34;0
2020-06-09;water and sewage;utility;60.56;0
2020-06-10;Fitness studio, Jane;health and sports;19.00;0
2020-06-11;payment to bank;monthly redemption payment;1287.43;0
2020-06-12;LeGourmet Restaurant;restaurants and hotels;145.00;0
2020-06-13;supermarket;food and beverages;197.42;0
2020-06-13;Pizzeria da Pulcinella;restaurants and hotels;60.00;0
2020-06-26;supermarket;food and beverages;155.42;0
2020-06-27;theatre tickets;education and culture;125;0
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2020-07-02;Salary Frank;Income;0;4896.44
2020-07-03;supermarket;food and beverages;147.90;0
2020-07-05;Salary Laura;Income;0;4910.14
2020-07-08;Golf Club, yearly payment;health and sports;612.18;0
2020-07-09;house insurance;insurances and taxes;167.89;0
2020-07-10;Fitness studio, Jane;health and sports;19.00;0
2020-07-10;supermarket;food and beverages;144.12;0
2020-07-11;payment to bank;monthly redemption payment;1287.43;0
2020-07-18;supermarket;food and beverages;211.24;0
2020-07-13;Pizzeria da Pulcinella;restaurants and hotels;33.00;0
2020-07-23;Cinema;education and culture;19;0
2020-07-25;supermarket;food and beverages;186.11;0

The above mentioned csv file is saved under the name expenses_and_income.csv in
the folder data . It is easy to read it in with Pandas as we can see in our
chapter Pandas Data Files:

import pandas as pd
exp_inc = pd.read_csv("data1/expenses_and_income.csv", sep=";")
exp_inc
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Output:

Date Description Category Out In

0 2020-06-02 Salary Frank Income 0.00 4896.44

1 2020-06-03 supermarket food and
beverages 132.40 0.00

2 2020-06-04 Salary Laura Income 0.00 4910.14

3 2929-06-04 GreenEnergy Corp.,
(electricity) utility 87.34 0.00

4 2020-06-09 water and sewage utility 60.56 0.00

5 2020-06-10 Fitness studio, Jane health and sports 19.00 0.00

6 2020-06-11 payment to bank
monthly

redemption
payment

1287.43 0.00

7 2020-06-12 LeGourmet Restaurant restaurants and
hotels 145.00 0.00

8 2020-06-13 supermarket food and
beverages 197.42 0.00

9 2020-06-13 Pizzeria da
Pulcinella

restaurants and
hotels 60.00 0.00

10 2020-06-26 supermarket food and
beverages 155.42 0.00
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Date Description Category Out In

11 2020-06-27 theatre tickets education and
culture 125.00 0.00

12 2020-07-02 Salary Frank Income 0.00 4896.44

13 2020-07-03 supermarket food and
beverages 147.90 0.00

14 2020-07-05 Salary Laura Income 0.00 4910.14

15 2020-07-08 Golf Club, yearly
payment health and sports 612.18 0.00

16 2020-07-09 house insurance insurances and
taxes 167.89 0.00

17 2020-07-10 Fitness studio, Jane health and sports 19.00 0.00

18 2020-07-10 supermarket food and
beverages 144.12 0.00

19 2020-07-11 payment to bank
monthly

redemption
payment

1287.43 0.00

20 2020-07-18 supermarket food and
beverages 211.24 0.00

21 2020-07-13 Pizzeria da
Pulcinella

restaurants and
hotels 33.00 0.00

22 2020-07-23 Cinema education and
culture 19.00 0.00
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By reading the CSV file, we created a DataFrame object. What can we do with it,
or in other words: what information interests Frank and Laura? Of course they are
interested in the account balance. They want to know what the total income was
and they want to see the total of all expenses.

The balances of their expenses and incomes can be easily calculated by applying
the sum on the DataFrame exp_inc[['Out', 'In']] :

exp_inc[['Out', 'In']].sum()

What other information do they want to gain from the data? They might be
interested in seeing the expenses summed up according to the different
categories. This can be done using groupby and sum:

category_sums = exp_inc.groupby("Category").sum()
category_sums

Date Description Category Out In

23 2020-07-25 supermarket food and
beverages 186.11 0.00

Output: Out     5097.44
In     19613.16
dtype: float64

EXPENSES AND INCOME EXAMPLE 470



category_sums.index

Output:

Out In

Category

Income 0.00 19613.16

education and culture 144.00 0.00

food and beverages 1174.61 0.00

health and sports 650.18 0.00

insurances and taxes 167.89 0.00

monthly redemption payment 2574.86 0.00

restaurants and hotels 238.00 0.00

utility 147.90 0.00
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import matplotlib.pyplot as plt
ax = category_sums.plot.bar(y="Out")
plt.xticks(rotation=45)

We can also display this as a pie chart:

Output: Index(['Income', 'education and culture', 'food and beverages',
'health and sports', 'insurances and taxes',
'monthly redemption payment', 'restaurants and hotels', 'uti

lity'],
dtype='object', name='Category')

Output: (array([0, 1, 2, 3, 4, 5, 6, 7]), <a list of 8 Text xticklabel obje
cts>)

EXPENSES AND INCOME EXAMPLE 472



ax = category_sums.plot.pie(y="Out")
ax.legend(loc="upper left", bbox_to_anchor=(1.5, 1))

Alternatively, we can create the same pie plot with the following code:

ax = category_sums["Out"].plot.pie()
ax.legend(loc="upper left", bbox_to_anchor=(1.5, 1))

Output: <matplotlib.legend.Legend at 0x7fe20d953fd0>
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If you imagine that you will have to type in all the time category names like
"household goods and service" or "rent and mortgage interest", you will agree
that it is very likely to have typos in your journal of expenses and income.

So it will be a good idea to use numbers (account numbers) for your categories.
The following categories are available in our example.

The following categories are provided:

Category Account Number

rent and mortgage interest 200

insurances and taxes 201

food and beverages 202

education and culture 203

transport 204

health and sports 205

household goods and services 206

Output: <matplotlib.legend.Legend at 0x7fe20d90c810>
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Category Account Number

clothing 207

communications 208

restaurants and hotels 209

utility ( heating, electricity, water, and garbage) 210

other expenses 211

income 400

We can implement this as a dictionary mapping categories into account numbers:

category2account = {'monthly redemption payment': '200',
'insurances and taxes': '201',
'food and beverages': '202',
'education and culture': '203',
'transport': '204',
'health and sports': '205',
'household goods and services': '206',
'clothing': '207',
'communications': '208',
'restaurants and hotels': '209',
'utility': '210',
'other expenses': '211',
'Income': '400'}

The next step is to replace our "clumsy" category names with the account numbers.
The replace method of DataFrame is ideal for this purpose. We can replace all
the occurrences of the category names in our DataFrame by the corresponding
account names:

exp_inc.replace(category2account, inplace=True)
exp_inc.rename(columns={"Category": "Accounts"}, inplace=True)
exp_inc[:5]

EXPENSES AND INCOME EXAMPLE 475



We will save this DataFrame object now in an excel file. This excel file will
have two sheets: One with the "expenses and income" journal and the other one
with the mapping of account numbers to category names.
We will turn the category2account dictionary into a Series object for this
purpose. The account numbers serve as the index:

account_numbers = pd.Series(list(category2account.keys()), index=category
2account.values())
account_numbers.name = "Description"
account_numbers.rename("Accounts")

Output:

Date Description Accounts Out In

0 2020-06-02 Salary Frank 400 0.00 4896.44

1 2020-06-03 supermarket 202 132.40 0.00

2 2020-06-04 Salary Laura 400 0.00 4910.14

3 2929-06-04 GreenEnergy Corp., (electricity) 210 87.34 0.00

4 2020-06-09 water and sewage 210 60.56 0.00
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exp_inc.insert(1, "accounts", account_numbers)

with pd.ExcelWriter('data1/expenses_and_income_2020.xlsx') as writer:
account_numbers.to_excel(writer, "account numbers")
exp_inc.to_excel(writer, "journal")
writer.save()

Output: 200      monthly redemption payment
201            insurances and taxes
202              food and beverages
203           education and culture
204                       transport
205               health and sports
206    household goods and services
207                        clothing
208                  communications
209          restaurants and hotels
210                         utility
211                  other expenses
400                          Income
Name: Accounts, dtype: object
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NET INCOME METHOD EXAMPLE

The Net Income Method (in
Germany known as
Einnahmeüberschussrechnung,
EÜR) is a simplified profit
determination method. Under
German law, self-employed
persons such as doctors,
lawyers, architects and others
have the choice of submitting
annual accounts or using the
simple net income method. What
we present in this chapter of
our Pandas tutorial will not
only be interesting for small
companies, especially in
Germany and EU countries, but
also for other countries in
the world as well.

We are mainly interested in
introducing the different ways
in which pandas and python can solve such problems. We show what it is all about
to monitor the flow of money and in this way to better understand the financial
situation. The algorithms can also be used for tax purposes. But be warned, this
is a very general treatment of the matter and needs to be adjusted to the actual
tax situation in your country. Although it is mainly based on German law, we
cannot guarantee its accuracy! So, before you actually use it, you have to make
sure that it is suitable for your situation and the tax laws of your country.

Very often a Microsoft Excel file is used for mainting a journal file of the
financial transactions.
In the data1 folder there is a file that contains an Excel file
net_income_method_2020.xlsx with the accounting data of a fictitious company.
We could have used simple texts files like csv as well.

JOURNAL FILE
This excel document contains two data sheets: One with the actual data "journal"
and one with the name "account numbers", which contains the mapping from the
account numbers to the description.
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We will read this excel file into two DataFrame objects:
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import pandas as pd
with pd.ExcelFile("data1/net_income_method_2020.xlsx") as xl:

accounts2descr = xl.parse("account numbers",
index_col=0)

journal = xl.parse("journal",
index_col=0,

)

journal.index = pd.to_datetime(journal.index)
journal.index
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The first one is the tab "account numbers" which contains the mapping from the
account numbers to the description of the accounts:

Output: DatetimeIndex(['2020-04-02', '2020-04-02', '2020-04-02', '2020-04-0
2',

'2020-04-02', '2020-04-02', '2020-04-05', '2020-04-0
5',

'2020-04-05', '2020-04-05', '2020-04-09', '2020-04-0
9',

'2020-04-10', '2020-04-10', '2020-04-10', '2020-04-1
0',

'2020-04-10', '2020-04-10', '2020-04-13', '2020-04-1
3',

'2020-04-13', '2020-04-26', '2020-04-26', '2020-04-2
6',

'2020-04-26', '2020-04-27', '2020-05-03', '2020-05-0
3',

'2020-05-03', '2020-05-03', '2020-05-05', '2020-05-0
5',

'2020-05-08', '2020-05-09', '2020-05-10', '2020-05-1
1',

'2020-05-11', '2020-05-11', '2020-05-11', '2020-05-1
1',

'2020-05-13', '2020-05-18', '2020-05-25', '2020-05-2
5',

'2020-06-01', '2020-06-02', '2020-06-03', '2020-06-0
3',

'2020-06-04', '2020-06-04', '2020-06-09', '2020-06-1
0',

'2020-06-10', '2020-06-11', '2020-06-11', '2020-06-1
1',

'2020-06-11', '2020-06-11', '2020-06-12', '2020-06-1
3',

'2020-06-13', '2020-06-26', '2020-06-26', '2020-06-2
7',

'2020-07-02', '2020-07-03', '2020-07-05', '2020-07-0
5',

'2020-07-08', '2020-07-09', '2020-07-10', '2020-07-1
0',

'2020-07-10', '2020-07-10', '2020-07-10', '2020-07-1
0',

'2020-07-11', '2020-07-11', '2020-07-13', '2020-07-1
8',

'2020-07-23', '2020-07-23', '2020-07-25', '2020-07-2
5',

'2020-07-27', '2020-07-26', '2020-07-28'],
dtype='datetime64[ns]', name='date', freq=None)
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accounts2descr
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Output:

description

account

4400 revenue plant Munich

4401 revenue plant Frankfurt

4402 revenue plant Berlin

2010 souvenirs

2020 clothes

2030 other articles

2050 books

2100 insurances

2200 wages

2300 loans

2400 hotels

2500 petrol
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The second data sheet "journal" contains the actual journal entries:

journal[:10]

description

account

2600 telecommunication

2610 internet
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Output:

account
number

document
number description tax

rate
gross
amount

date

2020-04-02 4402 8983233038 Zurkan, Köln 19 4105.98

2020-04-02 2010 57550799 Birmann,
Souvenirs 19 -1890.00

2020-04-02 2200 14989004 wages 0 -17478.23

2020-04-02 2500 12766279 Filling Station,
Petrol 19 -89.40

2020-04-02 4400 3733462359 EnergyCom,
Hamburg 19 4663.54

2020-04-02 4402 7526058231 Enoigo,
Strasbourg 19 2412.82

2020-04-05 4402 1157284466 Qbooks, Frankfurt 7 2631.42

2020-04-05 4402 7009463592 Qbooks, Köln 7 3628.45

2020-04-05 2020 68433353 Jamdon, Clothes 19 -1900.00

2020-04-05 2010 53353169 Outleg, Souvenirs 19 -2200.00
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There are many ways to analyze this data. We can for example sum up all the
accounts:

account_sums = journal[["account number", "gross amount"]].groupby("accou
nt number").sum()
account_sums
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Output:

gross amount

account number

2010 -4090.00

2020 -10500.80

2030 -1350.00

2050 -900.00

2100 -612.00

2200 -69912.92

2300 -18791.92

2400 -1597.10

2500 -89.40

2600 -492.48

2610 -561.00

4400 37771.84

NET INCOME METHOD EXAMPLE 489



ACCOUNT CHARTS
What about showing a pie chart of these sums? We encounter one problem: Pie
charts cannot contain negative values. However this is not a real problem. We can
split the accounts into income and expense accounts. Of course, this corresponds
more to what we really want to see.

CHARTS FOR THE INCOME ACCOUNTS

We create a DataFrame with the income accounts:

income_accounts = account_sums[account_sums["gross amount"] > 0]
income_accounts

gross amount

account number

4401 69610.35

4402 61593.99
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We can now visualize these values in a pie chart.

plot = income_accounts.plot(y='gross amount', figsize=(5, 5), kind="pie")

Output:

gross amount

account number

4400 37771.84

4401 69610.35

4402 61593.99
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You probably don't like the position of the legend? With the parameter
bbox_to_anchor we can position it on a desired position. So, if we want to, we
can even move it outside of the plot. With the relative coordinate values (0.5,
0.5) we position the legend in the center of the plot.
The legend is a box structure. So the question is what does the postion (0.5,
0.5) mean? We can define this by using the parameter loc additionally:

loc value meaning

upper left bbox_to_anchor describes the position of the left upper corner of the
legend box

upper
right correspondingly the upper right corner

lower left the lower left corner

lower left the lower right corner

We use this to position the legend with its left upper corner positioned in the
middle of the plot:

plot = income_accounts.plot(y='gross amount',
figsize=(5, 5),
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kind="pie")
plot.legend(bbox_to_anchor=(0.5, 0.5),

loc="upper left")

Now we position the lower right corner of the legend into the center of the plot:

plot = income_accounts.plot(y='gross amount', figsize=(5, 5), kind="pie")
plot.legend(bbox_to_anchor=(0.5, 0.5),

loc="lower right")

Output: <matplotlib.legend.Legend at 0x7f172ca03a90>
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There is another thing we can improve. We see the labels 4400, 4401, and 4402
beside of each pie segment. In addition, we see them in the legend. This is ugly
and redundant information. In the following we will turn the labels off, i.e. set
them to an empty string, in the plot and we explicitly set them in the legend
method:

plot = income_accounts.plot(y='gross amount',
figsize=(5, 5),
kind="pie",
labels=['', '', ''])

plot.legend(bbox_to_anchor=(0.5, 0.5),
labels=income_accounts.index)

Output: <matplotlib.legend.Legend at 0x7f172c9c5590>
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Now, we are close to perfection. Just one more tiny thing. Some might prefer to
see the actual description text rather than an account number. We will cut out
this information from the DataFrame accounts2descr by using loc and the list
of desired numbers [4400, 4401, 4402] . The result of this operation will be the
argument of the set_index method. (Atention: reindex is not giving the wanted
results!)

descriptions = accounts2descr["description"].loc[[4400, 4401, 4402]]
plot = income_accounts.plot(kind="pie",

y='gross amount',
figsize=(5, 5),
labels=['', '', ''])

plot.legend(bbox_to_anchor=(0.5, 0.5),
loc="lower left",
labels=descriptions)

Output: <matplotlib.legend.Legend at 0x7f172c956550>
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Would you prefer a bar chart? No problem, we just have to set the parameter
kind to bar instead of pie :

plot = income_accounts.plot(y='gross amount',
figsize=(5, 5),
kind="bar",
legend=False)

Output: <matplotlib.legend.Legend at 0x7f172c8ba8d0>
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For bar charts we have to set kind to barh . So that it doesn't get too boring,
we can also color the bars by passing a list of colors to the color parameter:

plot = income_accounts.plot(y='gross amount',
figsize=(5, 5),
kind="barh",
legend=False,
color=['green', 'orange', 'blue'])
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CHARTS FOR THE EXPENSES ACCOUNTS

we can do the same now with our debitors (expenses accounts):

expenses_accounts = account_sums[account_sums["gross amount"] < 0]
expenses_accounts
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Output:

gross amount

account number

2010 -4090.00

2020 -10500.80

2030 -1350.00

2050 -900.00

2100 -612.00

2200 -69912.92

2300 -18791.92

2400 -1597.10

2500 -89.40

2600 -492.48

2610 -561.00
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acc2descr_expenses = accounts2descr["description"].loc[expenses_account
s.index]
acc2descr_expenses

expenses_accounts.set_index(acc2descr_expenses.values, inplace=True)
expenses_accounts *= -1

labels = [''] * len(expenses_accounts)
plot = expenses_accounts.plot(kind="pie",

y='gross amount',
figsize=(5, 5),
labels=labels)

plot.legend(bbox_to_anchor=(0.5, 0.5),
labels=expenses_accounts.index)

Output: account number
2010            souvenirs
2020              clothes
2030       other articles
2050                books
2100           insurances
2200                wages
2300                loans
2400               hotels
2500               petrol
2600    telecommunication
2610             internet
Name: description, dtype: object
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TAX SUMS
We will sum up the amount according to their tax rate.

journal.drop(columns=["account number"])

Output: <matplotlib.legend.Legend at 0x7f172868f0d0>
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Output:

document
number description tax

rate
gross
amount

date

2020-04-02 8983233038 Zurkan, Köln 19 4105.98

2020-04-02 57550799 Birmann, Souvenirs 19 -1890.00

2020-04-02 14989004 wages 0 -17478.23

2020-04-02 12766279 Filling Station, Petrol 19 -89.40

2020-04-02 3733462359 EnergyCom, Hamburg 19 4663.54

... ... ... ... ...

2020-07-25 5204418668 BoKoData, Bodensee,
Konstanz 19 3678.38

2020-07-25 85241331 Hotel, Konstanz 7 -583.00

2020-07-27 26865618 Hotel, Franfurt 7 -450.00

2020-07-26 5892708524 Oscar Zopvar KG,
Luxemburg 19 2589.80

2020-07-28 1633775505 Oscar Zopvar KG,
Luxemburg 19 3578.46
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In the following we will define a function tax_sums that calculates the VAT
sums according to tax rates from a journal DataFrame:

def tax_sums(journal_df, months=None):
""" Returns a DataFrame with sales and tax rates -

If a number or list is passed to 'months', only the sales
of the corresponding months will be used.
Example: tax_sums(df, months=[3, 6]) will only use the months
3 (March) and 6 (June)"""

if months:
if isinstance(months, int):

month_cond = journal_df.index.month == months
elif isinstance(months, (list, tuple)):

month_cond = journal_df.index.month.isin(months)
positive = journal_df["gross amount"] > 0
# sales_taxes eq. umsatzsteuer
sales_taxes = journal_df[positive & month_cond]
negative = journal_df["gross amount"] < 0
# input_taxes equivalent to German Vorsteuer
input_taxes = journal_df[negative & month_cond]

else:
sales_taxes = journal_df[journal_df["gross amount"] > 0]
input_taxes = journal_df[journal_df["gross amount"] < 0]

sales_taxes = sales_taxes[["tax rate", "gross amount"]].groupby("tax
rate").sum()

sales_taxes.rename(columns={"gross amount": "Sales Gross"},
inplace=True)

sales_taxes.index.name = 'Tax Rate'

input_taxes = input_taxes[["tax rate", "gross amount"]].groupby("tax
rate").sum()

input_taxes.rename(columns={"gross amount": "Expenses Gross"},
inplace=True)

input_taxes.index.name = 'Tax Rate'

taxes = pd.concat([input_taxes, sales_taxes], axis=1)
taxes.insert(1,

column="Input Taxes",
value=(taxes["Sales Gross"] * taxes.index / 100).roun

d(2))
taxes.insert(3,

column="Sales Taxes",

87 rows × 4 columns
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value=(taxes["Expenses Gross"] * taxes.index / 100).roun
d(2))

return taxes.fillna(0)

tax_sums(journal)

stsum_5 = tax_sums(journal, months=5)
stsum_6 = tax_sums(journal, months=6)
stsum_5

Output:

Expenses Gross Input Taxes Sales Gross Sales Taxes

Tax Rate

0 -90102.20 0.00 8334.43 -0.00

7 -3847.10 786.85 11240.71 -269.30

19 -14948.32 28386.20 149401.04 -2840.18
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tax_sums(journal, months=[5, 6])

Output:

Expenses Gross Input Taxes Sales Gross Sales Taxes

Tax Rate

0 -22411.53 0.00 0.00 -0.00

7 -900.00 0.00 0.00 -63.00

19 -145.00 5952.51 31328.98 -27.55
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Output:

Expenses Gross Input Taxes Sales Gross Sales Taxes

Tax Rate

0 -44812.14 0.00 6479.47 -0.00

7 -900.00 348.66 4980.84 -63.00

19 -268.12 12520.85 65899.23 -50.94
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LINEAR COMBINATION

DEFINITIONS
A linear combination in mathematics is an
expression constructed from a set of terms by
multiplying
each term by a constant and adding the results.

Example of a linear combination:

a · x + b · y is a linear combination of x and y
with a and b constants.

Generally;

p = λ1 · x1 + λ2 ·
x2 … λn · xn

p is the scalar product of the values x1, x2 … xn and

λ1, λ2 … λn are called scalars.

In most applications x1, x2 … xn are vectors and
the lambdas are
integers or real numbers. (For those, who prefer it mor formally:  x1, x2 …
xn ∈ V and V is a vector space, and

λ1, λ2 … λn ∈ K with K being a field)

</p>

LINEAR COMBINATIONS IN PYTHON
The vector y = (3.21, 1.77, 3.65) can be easily written as a linear combination
of the unit vectors
(0,0,1), (0,1,0) and (1,0,0):

(3.21, 1.77, 3.65) = 3.21 · (1,0,0) + 1.77   (0,1,0) + 3.65 · (0,0,1)
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We can do the calculation with Python, using the module numpy:

import numpy as np
x = np.array([[0, 0, 1],

[0, 1, 0],
[1, 0, 0]])

y = ([3.65, 1.55, 3.42])
scalars = np.linalg.solve(x, y)
scalars

The previous example was very easy, because we could work out the result in our
head. What about writing our vector y = (3.21, 1.77, 3.65) as a linear
combination of the vectors (0,1,1), (1,1,0) and (1,0,1)? It looks like this in
Python:

import numpy as np
x = np.array([[0, 1, 1],

[1, 1, 0],
[1, 0, 1]])

y = ([3.65, 1.55, 3.42])
scalars = np.linalg.solve(x, y)
scalars

ANOTHER EXAMPLE
Any integer between -40 and 40 can be written as a linear combination of 1, 3, 9,

Output: array([3.42, 1.55, 3.65])

Output: array([0.66, 0.89, 2.76])

LINEAR COMBINATION 509



27 with scalars being elements
of the set {-1, 0, 1}.

For example:

7 = 1 · 1 +  (-1) · 3 + 1 · 9 + 0 · 27

We can calculate these scalars with Python. First we need a generator generating
all the possible scalar
combinations. If you have problems in understanding the concept of a generator,
we recommend the chapter
"Iterators and Generators" of our tutorial.

def factors_set():
for i in [-1, 0, 1]:

for j in [-1,0,1]:
for k in [-1,0,1]:

for l in [-1,0,1]:
yield (i, j, k, l)

We will use the memoize() technique (see chapter "Memoization and Decorators" of
our tutorial) to memorize previous results:

def memoize(f):
results = {}
def helper(n):

if n not in results:
results[n] = f(n)

return results[n]
return helper

Finally, in our function linear_combination() we check every scalar tuple, if it
can create the value n:

@memoize
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def linear_combination(n):
""" returns the tuple (i,j,k,l) satisfying

n = i*1 + j*3 + k*9 + l*27      """
weighs = (1,3,9,27)

for factors in factors_set():
sum = 0
for i in range(len(factors)):

sum += factors[i] * weighs[i]
if sum == n:

return factors

Putting it all together results in the following script:

def factors_set():
for i in [-1, 0, 1]:

for j in [-1, 0, 1]:
for k in [-1, 0, 1]:

for l in [-1, 0, 1]:
yield (i, j, k, l)

def memoize(f):
results = {}
def helper(n):

if n not in results:
results[n] = f(n)

return results[n]
return helper

@memoize
def linear_combination(n):

""" returns the tuple (i,j,k,l) satisfying
n = i*1 + j*3 + k*9 + l*27      """

weighs = (1, 3, 9, 27)

for factors in factors_set():
sum = 0
for i in range(len(factors)):

sum += factors[i] * weighs[i]
if sum == n:

return factors

# calculate the linear combinations of the first 10 positive integers:
for i in range(1,11):
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print(linear_combination(i))

(1, 0, 0, 0)
(-1, 1, 0, 0)
(0, 1, 0, 0)
(1, 1, 0, 0)
(-1, -1, 1, 0)
(0, -1, 1, 0)
(1, -1, 1, 0)
(-1, 0, 1, 0)
(0, 0, 1, 0)
(1, 0, 1, 0)
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